
 

 FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035  |  +1 408.321.6300  |  +1 877.FIREEYE (347.3393)  |  info@FireEye.com  |  www.FireEye.com             
1 

Challenge #7 Solution 
by Matt Graeber 

 

YUSoMeta.exe is an obfuscated .NET executable that claims to be 100% tamper proof. The 
goal of this challenge is to provide the correct password in the hopes of revealing the 
password to the next challenge. Normally, one would be able to open this executable in a 
.NET decompiler, navigate to the entry point method, and then look for the password 
comparison logic. Loading this executable into my new favorite decompiler – dnspy, however 
reveals that it was obfuscated with SmartAssembly 6.9.0.114. 

 

Figure 1: YUSoMeta..exe assembly attributes 

Looking at a snippet of the entry point method, it is not immediately obvious what is going on 
due the obfuscation. 



 

 

 

 FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035  |  +1 408.321.6300  |  +1 877.FIREEYE (347.3393)  |  info@FireEye.com  |  www.FireEye.com             
2 

 

Figure 2: Obfuscated YUSoMeta.exe entry point method 

At this point, rather than attempting to understand all of the obfuscated logic, I will see if 
de4dot – an extremely powerful .NET deobfuscation utility that deobfuscates most .NET 
executables out of the box - will get the job done. I executed the following in order to attempt 
to deobfuscate the executable: 

D:\Challenge_7>de4dot YUSoMeta.exe -o YUSoMeta_deobfuscated.exe 
 
de4dot v3.1.41592.3405 Copyright (C) 2011-2014 de4dot@gmail.com 
Latest version and source code: https://github.com/0xd4d/de4dot 
21 deobfuscator modules loaded! 
 
Detected SmartAssembly 6.9.0.114 (D:\Challenge_7\YUSoMeta.exe) 
Cleaning D:\Challenge_7\YUSoMeta.exe 
Renaming all obfuscated symbols 
Saving D:\Challenge_7\YUSoMeta_deobfuscated.exe 
Figure 3: Command Line output 

There are a lot of options that you can provide de4dot which become necessary when 
deobfuscation fails out of the box. However, these options seen above are the default options 
I will use. The –o flag specifies the output file name of the new, deobfuscated executable. 

Now, after loading YUSoMeta_deobfuscated.exe into dnspy, the logic of the entry point 
method becomes much clearer. So out of the box, de4dot correctly identified the fact that it 
was obfuscated with Smart Assembly and it deobfuscated everything accordingly. 



 

 

 

 FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035  |  +1 408.321.6300  |  +1 877.FIREEYE (347.3393)  |  info@FireEye.com  |  www.FireEye.com             
3 

 

Figure 4: Deobfuscated entry point method snippet 

It is now evident that user input (via Console.ReadLine) is compared against a string derived 
from the execution of two methods: smethod_0 and smethod_3. Going back to the entry 
point method of the obfuscated entry point, the similarities in logic become a little clearer – 
specifically, you can see that two methods are executed and an underscore is inserted in 
between the strings returned. Take note of these methods because we may want to execute 
them later on. 

Now at this point, I would typically be faced with the following options: 

1. Investigate how smethod_0 and smethod_3 are implemented and attempt to 
recreate the logic in a C# project or PowerShell script or 

2. Let the executable do the work for us by invoking those methods dynamically using the 
.NET reflection libraries. 

Anyone should be able to read deobfuscated C# code and eventually figure out how the 
password is derived. I’m lazy however and I’d rather compel the executable to tell me what 
the password is. Let’s investigate smethod_0. 

 

Figure 5: Password portion #1 decoder 

smethod_0 takes the result of smethod_2 and uses it as the basis for a rolling XOR key for the 
byte array passed in. The byte array passed in to smethod_0 is the following: 



 

 

 

 FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035  |  +1 408.321.6300  |  +1 877.FIREEYE (347.3393)  |  info@FireEye.com  |  www.FireEye.com             
4 

31,100,116,97,0,84,69,21,115,97,109,29,79,68,21,104,115,104,21,84,78  
 

Next, let’s briefly look at the implementation of smethod_3. 

 

Figure 6: Password portion #2 derivation method 

This is a static method that doesn’t take any arguments and returns an MD5 hash string. 

So now we are armed with the following information: 

1) The 1st portion of the password is derived by XOR decoding a byte array with a byte 
array returned from the smethod_2 method 

2) The 2nd portion of the password is an MD5 hash of some unknown value. 
3) An underscore is inserted in between each portion of the password 

Now let’s obtain the metadata token numbers for each of the methods that we’d like to 
execute from the obfuscated binary. For reference, a metadata token is a numeric identifier 
for any .NET member (including methods). Using the .NET reflection library, methods can be 
referenced by their metadata token. This is useful because obfuscation utilities will often 
rename methods to unprintable Unicode strings making it so that they cannot be easily 
referenced by name. In dnspy, the metadata token is visible at the top left of any method. 
They always begin with 0x06. 

Solution #1 

Once the metadata tokens are obtained for the methods we want to execute, a simple 
PowerShell script can be written to perform that password validation for us. 

# Path to the obfuscated executable 
$ObfuscatedFilePath = 'D:\Challenge_7\YUSoMeta.exe' 
 
# Read in the obfuscated executable in memory. This will allow us to invoke its 
# methods dynamically. 
$Assembly = [Reflection.Assembly]::Load([IO.File]::ReadAllBytes($ObfuscatedFilePath)) 
 
# Get a reference to main assembly module. 
# This exposes the ResolveMethod method. 
$Module = $Assembly.ManifestModule 
 
# Encoded password copied from the deobfuscated executable 
$EncodedPassword = [Byte[]] 
@(31,100,116,97,0,84,69,21,115,97,109,29,79,68,21,104,115,104,21,84,78) 
 



 

 

 

 FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035  |  +1 408.321.6300  |  +1 877.FIREEYE (347.3393)  |  info@FireEye.com  |  www.FireEye.com             
5 

# Obtained from the obfuscated executable 
$ReturnXORKeyMetadataToken = 0x06000006 
$ReturnXORKey = $Module.ResolveMethod($ReturnXORKeyMetadataToken) 
 
# Invoke the method that obtains the XOR key 
$XorKey = $ReturnXORKey.Invoke($null, @()) 
 
# Decode the forst part of the password 
$DecodedPassword = for ($i = 0; $i -lt $EncodedPassword.Length; $i++) { 
    $EncodedPassword[$i] -bxor $XorKey[$i % ($XorKey.Length)] 
} 
 
# Convert the decoded byte array to an ASCII string 
$PWDPart1 = [Text.Encoding]::ASCII.GetString($DecodedPassword) 
# metaprogrammingisherd 
 
# Obtained from the obfuscated executable 
$GetPWDPart2MetadataToken = 0x06000008 
$GetPWDPart2 = $Module.ResolveMethod($GetPWDPart2MetadataToken) 
 
# Invoke the method that obtains the 2nd portion of the password 
$PWDPart2 = $GetPWDPart2.Invoke($null, @()) 
# DD9BE1704C690FB422F1509A46ABC988 
 
# Concatenate both portions of the password 
$Password = $PWDPart1 + '_' + $PWDPart2 
# metaprogrammingisherd_DD9BE1704C690FB422F1509A46ABC988 

Figure 7: PowerShell script to perform password validation  

 

Solution #2 
If the correct password is compared against the password input by the user, then won’t the 
password just be present in memory? Probably. Could it really be as simple as attaching a 
debugger to the process and just pulling out the string? Yeah, probably. As the saying goes, 
there’s no such thing as cheating in reverse engineering. 

I’ll attempt to locate the string using my favorite debugger – WinDbg/cdb. I’ll make this 
relatively easy: I’ll start the process in the debugger, enter a password, and let execution run 
until completion and hope that the password will just be sitting around in memory. Also, since 
we’re dealing with a .NET executable, we have a very powerful WinDbg extension at our 
disposal – sos.dll. One of the features of sos.dll is that it allows you to dump .NET objects 
of any type. Since the password is a System.String object, we can use the debugger 
extension do dump all .NET strings in memory and hopefully find the password.  

Lastly, before we get started, pretend you didn’t already know what the password was. How 
could we derive it? Well, we could easily find out the length of the string. Recall that the first 
part of the password is an XOR encoded byte array of length 21, there is an underscore, and 
the second part of the password is an MD5 string. An MD5 string is 32 characters in length. So 
the total number of characters of the password is 54. 

The following cdb commands will run YUSoMeta.exe to completion, load sos.dll, and dump all 
strings of length 54: 



 

 

 

 FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035  |  +1 408.321.6300  |  +1 877.FIREEYE (347.3393)  |  info@FireEye.com  |  www.FireEye.com             
6 

D:\Challenge_7>cdb -o YUSoMeta.exe 
 
Microsoft (R) Windows Debugger Version 10.0.10158.9 AMD64 
Copyright (c) Microsoft Corporation. All rights reserved. 
 
CommandLine: YUSoMeta.exe 
 
************* Symbol Path validation summary ************** 
Response                         Time (ms)     Location 
Deferred                                       
srv*C:\Symbols*http://msdl.microsoft.com/download/symbols 
Symbol search path is: 
srv*C:\Symbols*http://msdl.microsoft.com/download/symbols 
Executable search path is: 
ModLoad: 00000000`00ea0000 00000000`00ea8000   image00000000`00ea0000 
ModLoad: 00007ff8`9b670000 00007ff8`9b831000   ntdll.dll 
ModLoad: 00007ff8`919c0000 00007ff8`91a28000   
C:\Windows\SYSTEM32\MSCOREE.DLL 
ModLoad: 00007ff8`997c0000 00007ff8`9986d000   
C:\Windows\system32\KERNEL32.dll 
ModLoad: 00007ff8`98ab0000 00007ff8`98c8d000   
C:\Windows\system32\KERNELBASE.dll 
(10fc.d70): Break instruction exception - code 80000003 (first 
chance) 
ntdll!LdrpDoDebuggerBreak+0x30: 
00007ff8`9b72e250 cc              int     3 
0:000> g 
Warning! This program is 100% tamper-proof! 
Please enter the correct password: incorrectpassword 
Y U tamper with me? 
ntdll!NtTerminateProcess+0xa: 
00007ff8`9b7037ba c3              ret 
0:000> .loadby sos clr 
0:000> .foreach ( stringobj { !dumpheap -short -type System.String }) 
{.if (dwo(${stringobj}+8) == 0n54) { .printf "%mu\n", ${stringobj}+C 
} } 
 
[System.Reflection.AssemblyConfigurationAttribute("")] 
metaprogrammingisherd_DD9BE1704C690FB422F1509A46ABC988 
Figure 8: Console Debugging Session 

 
The .foreach command iterates over the address of each System.String object and 
compares the length field to 54. If there’s a match, then it prints the string as a Unicode string. 



 

 

 

 FireEye, Inc., 1440 McCarthy Blvd., Milpitas, CA 95035  |  +1 408.321.6300  |  +1 877.FIREEYE (347.3393)  |  info@FireEye.com  |  www.FireEye.com             
7 

The offsets of these fields become obvious if you were to inspect the bytes of a 
System.String object pointer. 

What you just saw was a highly targeted method of pulling out the password. You could have 
just as easily pulled it out by dumping process memory and doing a strings search for all strings 
of length 54 that contain an underscore. There is a multitude of ways to approach the 
problem. 

Lastly, you may have noticed that the generated password portions differed if you tried to 
generate them based on the deobfuscated version. The executable was designed to derive 
the password based on attributes only present in the obfuscated executable – hence, it being 
“tamper-proof”. This is why it’s beneficial to use the reflection libraries to invoke specific 
methods within the obfuscated executable. 

 


