
Appendix K: Segmented (New) .EXE File Header Format 

Appendix K 
Segmented (New) .EXE File Header Format 

Microsoft Windows requires much more information about a program than is available in 
the format of the .EXE executable file supported by MS-DOS. For example, Windows needs 
to identify the various segments of a program as code segments or data segments, to iden-
tify exported and imported functions, and to store the program's resources (such as icons, 
cursors, menus, and dialog-box templates). Windows must also support dynamically link-
able library modules containing routines that programs and other library modules can call. 
For this reason, Windows programs use an expanded .EXE header format called the New 
Executable file header format. This format is used for Windows programs, Windows li-
brary modules, and resource-only files such as the Windows font resource files. 

The Old Executable Header 

The New Executable file header format incorporates the existing MS-DOS executable file 
header format. In fact, the beginning of a New Executable file is simply a normal MS-DOS 
.EXE header. The 4 bytes at offset 3CH are a pointer to the beginning of the New Execut-
able header. (Offsets are from the beginning of the Old Executable header.) 

Length 
Offset 	(bytes) 	Contents 

00H 	1 	 Signature byte M 
01H 	1 	- 	Signature byte Z 
3CH 	4 	 Offset of New Executable header from beginning of file 

This normal MS-DOS .EXE header can contain size and relocation information for a non-
Windows MS-DOS program that is contained within the .EXE file along with the Windows 
program. This program is run when the .EXE file is executed from the MS-DOS command 
line. Most Windows programmers use a standard program that simply prints the message 
This program requires Microsoft Windows. 

Appendixes 1487 



Appendix K: Segmented (New) .EXE File Header Format 

The New Executable Header 

The beginning of the New Executable file header contains information about the location 
and size of various tables within the header. (Offsets are from the beginning of the New 
Executable header.) 

Offset 
Length 
(bytes) Contents 

00H 1 Signature byte N 
01H 1 Signature byte E 
02H 1 LINK version number 
03H 1 LINK revision number 
04H 2 Offset of beginning of entry table relative to beginning 

of New Executable header 
06H 2 Length of entry table 
08H 4 32-bit checksum of eptire contents of file, using zero 

for these 4 bytes 
OCH 2 Module flag word (see below) 
OEH 2 Segment number of automatic data segment (0 if 

neither SINGLEDATA nor MULTIPLEDATA flag is set 
in flag word) 

10H 2 Initial size of local heap to be added to automatic data 
segment (0 if there is no local heap) 

12H 2 Initial size of stack to be added to automatic data seg-
ment (0 for library modules) 

14H 2 Initial value of instruction pointer (IP) register on entry 
to program 

16H 2 Initial segment number for setting code segment (CS) 
register on entry to program 

18H 2 Initial value of stack pointer (SP) register on entry to 
program (0 if stack segment is automatic data seg-
ment; stack should be set above static data area and 
below local heap in automatic data segment) 

(more) 

1488 The MS-DOS Encyclopedia 



Appendix K: Segmented (New) .EXE File Header Format 

Offset 
Length 
(bytes) Contents 

lAH 2 Segment number for setting stack segment (SS) register 
on entry to program (0 for library modules) 

1CH 2 Number of entries in segment table 
lEH 2 Number of entries in module reference table 
20H 2 Number of bytes in nonresident names table 
22H 2 Offset of beginning of segment table relative to begin-

ning of New Executable header 
24H 2 Offset of beginning of resource table relative to begin-

ning of New Executable header 
26H 2 Offset of beginning of resident names table relative to 

beginning of New Executable header 
28H 2 Offset of beginning of module reference table relative 

to beginning of New Executable header 
2AH 2 Offset of beginning of imported names table relative to 

beginning of New Executable header 
2CH 4 Offset of nonresident names table relative to beginning 

of file 
30H 2 Number of movable entry points listed in entry table 
32H 2 Alignment shift count (0 is equivalent to 9) 
34H 12 Reserved for expansion 

The module flag word at offset OCH in the New Executable header is defined as shown in 
Figure K-1. 

1 if SINGLEDATA (library module) 
0 if NOAUTODATA (library module) 

1 if MULTIPLEDATA (program module) 

1 if module runs in real mode 

1 if module runs in protected mode 

1 if module is nonconforming 
(valid stack is not maintained) 

1 if library module 
0 if program module 

Figure K-1. The moduleflag word. 

Appendixes 1489 



Appendix K: Segmented (New) .EXE File Header Format 

The segment table 

This table contains one 8-byte record for every code and data segment in the program or 
library module. Each segment has an ordinal number associated with it. For example, the 
first segment has an ordinal number of 1. These segment numbers are used to reference 
the segments in other sections of the New Executable file. (Offsets are from the beginning 
of the record.) 

Offset 
Length 
(bytes) Contents 

00H 2 Offset of segment relative to beginning of file after 
shifting value left by alignment shift count 

02H 2 Length of segment (0000H for segment of 65536 bytes) 
04H 2 Segment flag word (see below) 
06H 2 Minimum allocation size for segment; that is, amount of 

space Windows reserves in memory for segment 
(0000H for minimum allocation size of 65536 bytes) 

The segment flag word is defined as shown in Figure K-2. 

1 if DATA 
0 if CODE 

1 if segment data is ITERATED 

1 if segment is MOVABLE 
0 if segment is FIXED 

1 if segment is PURE or SHAREABLE 
0 if segment is IMPURE or NONSHAREABLE 

1 if segment is PRELOAD 
0 if segment is LOADONCALL 

1 if code segment and EXECUTEONLY 
0 if data segment and READONLY 

1 if segment has relocation information 

1 if segment has debugging information 
Reserved for protected mode 

descriptor privilege level 

Priority level for discarding 

Figure K-2. The segment flag word. 

1490 The MS-DOS Encyclopedia 



Appendix K: Segmented (New) .EXE File Header Format 

The resource table 

Resources are segments that contain data but are not included in a program's normal data 
segments. Resources are commonly used in Windows programs to store menus, dialog-box 
templates, icons, cursors, and text strings, but they can also be used for any type of read-
only data. Each resource has a type and a name, both of which can be represented by 
either a number or an ASCII name. 

The resource table begins with a resource shift count used for adjusting other values in the 
table. (Offsets are from the beginning of the table.) 

Length 
Offset 	(bytes) 	Contents 

00H 	 2 	 Resource shift count 

This is followed by one or more resource groups, each defining one or more resources. 
(Offsets are from the beginning of the group.) 

Offset 
Length 
(bytes) Contents 

00H 2 Resource type (0 if end of table) 
If high bit set, type represented by predetermined 

number (high bit not shown): 
1 	Cursor 
2 	Bitmap 
3 	Icon 
4 	Menu template 
5 	Dialog-box template 

. 6 	' String table 
7 	Font directory 
8 	Font 
9 	Keyboard-accelerator table 

If high bit not set, type is ASCII text string and this 
value is offset from beginning of resource table, 
pointing to 1-byte value with number of bytes in 
string followed by string itself. 

02H 2 Number of resources of this type 
04H 4 Reserved for run-time use 
08H 12 each Resource description 

Each resource description requires 12 bytes. (Offsets are from the beginning of the 
description.) 

Appendixes 1491 



Appendix K: Segmented (New) .EXE File Header Format 

Offset 
Length 
(bytes) Contents 

00H 2 Offset of resource relative to beginning of file after 
shifting left by resource shift count 

02H 2 Length of resource after shifting left by resource shift 
count 

04H 2 Resource flag word (see below) 
06H 2 Resource name 

If high bit set, represented by a number; otherwise, 
type is ASCII text string and this value is offset from 
beginning of resource table, pointing to 1-byte value 
with number of bytes in string followed by string 
itself. 

08H 4 Reserved for run-time use 

The resource flag word is defined as shown in Figure K-3. 

1 if resource is MOVABLE 
0 if resource is FIXED 

1 if resource is PURE or SHAREABLE 
0 if resource is IMPURE or NONSHAREABLE 

1 if resource is PRELOAD 
0 if resource is LOADONCALL 

Priority level for discarding 

Figure K-3. The resource flag word. 

The resident names table 

This table contains a list of ASCII strings. The first 'string is the module name given in the 
module definition file. The other strings are the names of all exported functions listed in 
the module definition file that were not given explicit ordinal numbers or that were ex-
plicitly specified in the file as resident names. (Exported functions with explicit ordinal 
numbers in the module definition file are listed in the nonresident names table.) 

Each string is prefaced by a single byte indicating the number of characters in the string 
and is followed by a word (2 bytes) referencing an element in the entry table, beginning at 
1. The word that follows the module name is O. (Offsets are from the beginning of the 
record.) 

1492 The MS-DOS Encyclopedia 



Appendix K: Segmented (New) .EXE File Header Format 

Length 
Offset 	(bytes) 	Contents 

00H 	1 	 Number of bytes in string (0 if end of table) 
01H 	n 	 ASCII string, not null-terminated 
n +1 	2 	 Index into entry table 

The module reference table 

The module reference table contains 2 bytes for every external module the program uses. 
These 2 bytes are an offset into the imported names table. 

The imported names table 

The imported names table contains a list of ASCII strings. These strings are the names of 
all other modules that are referenced through imported functions. The strings are prefaced 
with a single byte indicating the length of the string. 

For most Windows programs, the imported names table includes KERNEL, USER, and GDI, 
but it can also include names of other modules, such as KEYBOARD and SOUND. (Offsets 
are from the beginning of the record.) 

Length 
Offset 	(bytes) 	Contents 

00H 	1 	 Number of bytes in name string 
01H 	n 	 ASCII name string, not null-terminated 

These strings do not necessarily start at the beginning of the imported names table; the 
names are referenced by offsets specified in the module reference table. 

The entry table 

This table contains one member for every entry point in the program or library module. 
(Every public FAR function or procedure in a module is an entry point.) The members in 
the entry table have ordinal numbers beginning at 1. These ordinal numbers are refer-
enced by the resident names table and the nonresident names table. 

LINK versions 4.0 and later bundle the members of the entry table. Each bundle begins 
with the following information. (Offsets are from the beginning of the bundle.) 

Length 
Offset 	(bytes) 	Contents 

00H 	1 	 Number of entry points in bundle (0 if end of table) 
01H 	1 	 Segment number of entry points if entry points in bun- 

dle are in single fixed segment; OFFH if entry points 
in bundle are in movable segments 

Appendixes 1493 



Appendix K: Segmented (New) .EXE File Header Format 

For a bundle containing entry points in fixed segments, each entry point requires 3 bytes. 
(Offsets are from the beginning of the entry description.) 

Length 
Offset 	(bytes) 	Contents 

00H 	1 	 Entry-point flag byte (see below) 
01H 	2 	 Offset of entry point in segment 

For bundles containing entry points in movable segments, each entry point requires 6 
bytes. (Offsets are from the beginning of the entry description.) 

Length 
Offset 	(bytes) 	Contents 

00H 	1 	 Entry-point flag byte (see below) 
01H 	2 	 Interrupt 3FH instruction: CDH 3FH 
03H 	 1 	 Segment number of entry point 
04H 	2 	 Offset of entry-point segment 

The entry-point flag byte is defined as shown in Figure K-4. 

7 6 5 4 3 2 1 0 

L • 1 if entry is exported 

1 if entry uses single data 
(library module) 

Number of parameter words 

Figure K-4. The entry-point flag. 

The nonresident names table 

This table contains a list of ASCII strings. The first string is the module description from 
the module definition file. The other strings are the names of all exported functions listed 
in the module definition file that have ordinal numbers associated with them. (Exported 
functions without ordinal numbers in the module definition file are listed in the resident 
names table.) 

Each string is prefaced by a single byte indicating the number of characters in the string 
and is followed by a word (2 bytes) referencing a member of the entry table, beginning at 
1. The word that follows the module description string is 0. (Offsets are from the beginning 
of the table.) 

1494 The MS-DOS Encyclopedia 



Appendix K: Segmented (New) .EXE File Header Format 

Length 
Offset 	(bytes) 	Contents 

00H 	1 	 Number of bytes in string (0 if end of table) 
01H 	n 	 ASCII string, not null-terminated 
n +1 	2 	 Index into entry table 

The code and data segment 

Following the various tables in the New Executable file header are the code and data seg-
ments of the program or library module. 

If the code or data segment is flagged in the segment flag word as ITERATED, the segment 
is organized as follows. (Offsets are from the beginning of the segment.) 

Length 
Offset 	(bytes) 	Contents 

00H 	2 	 Number of iterations of data 
02H 	2 	 Number of bytes of data 
04H 	n 	 Data 

Otherwise, the size of the segment data is given by the length of the segment field in the 
segment table. 

If the segment is flagged in the segment flag word as containing relocation information, 
then the relocation table begins immediately after the segment data. Windows uses the 
relocation table to resolve references within the segments to functions in other segments 
in the same module and to imported functions in other modules. (Offsets are from the 
beginning of the table.) 

Length 
Offset 	(bytes) 	Contents 

00H 	2 	 Number of relocation items 

Each relocation item requires 8 bytes. (Offsets are from the beginning of the relocation 
item.) 

Length 
Offset 	(bytes) 	Contents 

00H 	1 	 Type of address to insert in segment: 
01H Offset only 
02H Segment only 
03H Segment and offset 

(more) 

Appendixes 1495 



Appendix K: Segmented (New) .EXE File Header Format 

Length 
Offset 	(bytes) 	Contents 

01H 	1 	 Relocation type: 
00H Internal reference 
01H Imported ordinal 
02H Imported name 
If bit 2 set, relocation type is additive (see below) 

02H 	2 	 Offset of relocation item within segment 

The next 4 bytes depend on the relocation type. If the relocation type is an internal refer-
ence to a segment in the same module, these bytes are defined as follows. (Offsets are 
from the beginning of the relocation item.) 

Length 
Offset 	(bytes) 	Contents 

04H 	1 	 Segment number for fixed segment; OFFH for movable 
segment 

05H 	1 	 0 
06H 	2 	 If MOVABLE segment, ordinal number referenced in 

• 	 entry table; if FIXED segment, offset into segment 

If the relocation type is an imported ordinal to another module, then these bytes are 
defined as follows. (Offsets are from the beginning of the relocation item.) 

Length 
Offset 	(bytes) 	Contents 

04H 	2 	 Index into module reference table 
06H 	2 	 Function ordinal number 

Finally, if the relocation type is an imported name of a function in another module, these 
bytes are defined as follows. (Offsets are from the beginning of the relocation item.) 

Length 
Offset 	(bytes) 	Contents 

04H 	2 	 Index into module reference table 
06H 	2 	 Offset within imported names table to name of im- 

ported function 

1496 The MS-DOS Encyclopedia 



Appendix K: Segmented (New) .EXE File Header Format 

If the ADDITIVE flag of the relocation type is set, the address of the external function is 
added to the contents of the address in the target segment. If the ADDITIVE flag is not set, 
then the target contains an offset to another target within the same segment that requires 
the same relocation address. This defines a chain of target addresses that get the same ad-
dress. The chain is terminated with a —1 entry. 

III
Charles Petzold 

Appendixes 1497 


