
Article 4: Structure of an Application Program 

Article 4 
Structure of an Application Program 

Planning an MS-DOS application program requires serious analysis of the program's size. 
This analysis can help the programmer determine which of the two program styles sup-
ported by MS-DOS best suits the application. The .EXE program structure provides a large 
program with benefits resulting from the extra 512 bytes (or more) of header that preface 
all .EXE files. On the other hand, at the cost of losing the extra benefits, the .COM program 
structure does not burden a small program with the overhead of these extra header bytes. 

Because .COM programs start their lives as .EXE programs (before being converted by 
EXE2BIN) and because several aspects of application programming under MS-DOS 
remain similar regardless of the program structure used, a solid understanding of .EXE 
structures is beneficial even to the programmer who plans on writing only .COM pro-
grams. Therefore, we'll begin our discussion with the structure and behavior of .EXE 
programs and then look at differences between .COM programs and .EXE programs, 
including restrictions on the structure and content of .COM programs. 

The .EXE Program 

The .EXE program has several advantages over the .COM program for application design. 
Considerations that could lead to the choice of the .EXE format include 

• Extremely large programs 
• Multiple segments 
• Overlays 
• Segment and far address constants 
• Long calls 
• Possibility of upgrading programs to MS OS/2 protected mode 

The principal advantages of the .EXE format are provided by the file header. Most 
important, the header contains information that permits a program to make direct seg- 
ment address references— a requirement if the program is to grow beyond 64 KB. 

The file header also tells MS-DOS how much memory the program requires. This informa-
tion keeps memory not required by the program from being allocated to the program—
an important consideration if the program is to be upgraded in the future to run efficiently 
under MS OS/2 protected mode. 

Before discussing the .EXE program structure in detail, we'll look at how .EXE programs 
behave. 

Section IL Programming in the MS-DOS Environment 	107 



_ 	___ 	___,. 
( 

All segments 

declared 

as part of group 
DGROUP 

_ 
Any segments with class 

STAC .r.. 

Any segments with class 

BSS 

Any DGROUP segments 

not shown elsewhere  

Any segments with class 

BEGDATA 

Any segments with class names 
ending with CODE 

4 SP 

ss 

Start segment 
and start of 	0. 
program image 

(load module) 

4 IP 

• CS 

Program segment prefix (PSP) 

	  4 DS,ES 

Part B: Prog ramming for MS-DOS 

Giving control to the .EXE program 

Figure 4-1 gives an example of how a .EXE program might appear in memory when 
MS-DOS first gives the program control. The diagram shows Microsoft's preferred p ro. 
gram segment arrangement. 

Figure 4-7. The .EX E program: memory map diagram with register pointers. 

Before transferring control to the .EXE program, MS-DOS initializes various areas of 
memory and several of the microprocessor's registers. The following discussion explains 
what to expect from MS-DOS before it gives the .EXE program control. 

The program segment prefix 

The program segment prefix (PSP) is not a direct result of any program code. Rather, this 
special 256-byte (16-paragraph) page of memory is built by MS-DOS in front of all .EXE 
and .COM programs when they are loaded into memory. Although the PSP does contain 
several fields of use to newer programs, it exists primarily as a remnant of CP/M — 
Microsoft adopted the PSP for ease in porting the vast number of programs available under 
CP/M to the MS-DOS environment. Figure 4-2 shows the fields that make up the PSP. 

PSP:0000H (Terminate [old Warm Boot] Vector) The PSP begins with an 8086-family 
INT 20H instruction, which the program can use to transfer control back to MS-DOS. The 
PSP includes this instruction at offset 00H because this address was the WBOOT (Warm 
Boot/Terminate) vector under CP/M and CP/M programs usually terminated by jumping 
to this vector. This method of termination should not be used in newer programs. See 
Terminating the .EXE Program below. 

PSP:0002H (Address of Last Segment Allocated to Program) MS-DOS introduced the word 
at offset 02H into the PSP. It contains the segment address of the paragraph following the 
block of memory allocated to the program. This address should be used only to determine 
the size or the end of the memory block allocated to the program; it must not be con-
sidered a pointer to free memory that the program can appropriate. In most cases this ad-
dress will not point to free memory, because any free memory will already have been 

108 	The MS-DOS Encyclopedia 



x2I1 	x311 	x4H 	x511 	xell 	x711 	x8H 	x911 

Article 4: Structure of an Application Program 

xAH x1311 xCH xDH xEH xFH 

Resv. Fax call :iv MS-DOS fn handler Prev terminate address Prey Ctrl C.. 

see lo I sc.,: In 9A11 ors In 	ors hi I seg to 	scg hi ors Id ors hi seg 
lo  Iseg 

hi ors Id ors hi 

Prey critical error address Reserved... 
ofs to I 	ors 1st I scg lo 	Jwghi II 	II 1 

...Reserved Environ seg Reserved... 

11111111 seg lolseg hi 

II 	Il 
II 

111111111'11 
...Reserved 

11111111 III  
INT 2111 and RETF 

°CDH I 21ll  1 °C1311  

Reserved 

1 	1 	1 	I 	I 	I 	I 	I 
Primary FCB... 

d I F I i 1 1 1 
...Primary file control block (FCB) 

I 	eInla 	I m I e l E I" 	I 	I 	I 	1 14(0E1W i t 	PEI PEI .Mtl00 i 

Secondary FCB... 

...Secondary file control block (FCB) 
el n la Im I e lElx It 	100000000H 

Reserved 

I 	I 	I 
Command tail and default disk transfer area (DTA) (continues through OFF!-!)... 

Len ! 	111111111111111 

Figure 4-2. The program segment prefix (PSP). 

allocated to the program unless the program was linked using the /CPARMAXALLOC 
switch. Even when /CPARMAXALLOC is used, MS-DOS may fit the program into a block 
of memory only as big as the program requires. Well-behaved programs should acquire 
additional memory only through the MS-DOS function calls provided for that purpose. 

PSP:0005H (MS-DOS Function Call [old BDOSI Vector) Offset 05H is also a hand-me-
down from CP/M. This location contains an 8086-family far (intersegment) call instruction 
to MS-DOS's function request handler. (Under CP/M, this address was the Basic Disk Oper-
ating System MOS] vector, which served a similar purpose.) This vector should not be 
used to call MS-DOS in newer programs. The System Calls section of this book explains 
the newer, approved method for calling MS-DOS. MS-DOS provides this vector only to sup-
port CP/M-style programs and therefore honors only the CP/M-style functions (00-24H) 
through it. 

PS13:000AH-0015H (Parent's 22H, 231I, and 24H Interrupt Vector Save) MS-DOS uses 
offsets OAH through 15H to save the contents of three program-specific interrupt vectors. 
MS-DOS must save these vectors because it permits any program to execute another pro-
gram (called a child process) through an MS-DOS function call that returns control to the 
original program when the called program terminates. Because the original program 
resumes executing when the child program terminates, MS-DOS must restore these three 

Section a Programming in the MS-DOS Environment 	109 

I  End anon 

‘ 11 11 x1H 

O0th
r INT 2(111 

( CC211120I1 

lxli 	..addrcs; 

I stile I srg hi 

2x11 
IIII 

3x11 	 ...Reserved... 	 r MS-DOS 2.0 
and later only 



j:v.amnl'art 13: Pro 	ling for MS-DOS 

interrupt vectors for the original program in case the called program changed them. Th e  
three vectors involved include the program termination handler vector (Interrupt 22H), 
the Control-C/Control-13reak handler vector (Interrupt 23H), and the critical error handler 
vector (Interrupt 2411). MS-DOS saves the original preexec!it ion contents of these vectors 
in the child program's PSI' as doubleword fields beginning at offsets 0All for the Program 
termination handler vector, OM I for the Control-C/Controi-Break handler vector, and 12H 
for the critical error handler vector. 

PSP:002C1-1 (Segment Address of Environment) Under MS-DOS versions 2.0 and later

' 
 the 

word at offset 2CH contains one of the most useful pieces of information a program ca 
find in the PSP —the segment address of the first paragraph of the MS-DOS environment, 
This pointer enables the program to search through the environment for any configuration 
or directory search path strings placed there by users with the SET command. 

PSP:0050H (New MS-DOS Call Vector) Many programmers disregard the contents of offset 
5011. The location consists simply of an INT 21H instruction followed by a RETF. A .EXE 
program can call this location using a far call as a means of accessing the MS-DOS function 
handler. Of course, the program can also simply do an INT 2IH directly, which is smaller 
and faster than calling 5014. Unlike calls to offset 051-1, calls to offset 5011 can request the 
full range of MS-DOS functions. 

PSP:005CH (Default File Control Block 1) and PSP:006CH (Default File Control Block 2) 
MS-DOS parses the first two parameters the user enters in the command line following the 
program's name. If the first parameter qualifies as a valid (limited) MS-DOS filename 
(the name can be preceded by a drive letter but not a directory path), MS-DOS initializes 
offsets 5CH through 6BH with the first 16 bytes of an unopened file control block (FCB) for 
the specified file. If the second parameter also qualifies as a valid MS-DOS filename, 
MS-DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened PCB for 
the second specified file. If the user specifies a directory path as part of either filename, 
MS-DOS initializes only the drive code in the associated FCB. Many programmers no 
longer use this feature, because file access using FCBs does not support directory paths 
and other newer MS-DOS features. 

Because FCBs expand to 37 bytes when the file is opened, opening the first FCB at offset 
5CH causes it to grow from 16 bytes to 37 bytes and to overwrite the second FCB. Similarly, 
opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of 
the command tail and default disk transfer area (DTA). (The command tail and default 
DTA are described below.) To use the contents of both default FCBs, the program should 
copy the FCBs to a pair of 37-byte fields located in the program's data area. The program 
can use the first FCB without moving it only after relocating the second FCB (if neeessa rY)  
and only by performing sequential reads or writes when using the first FCB. To perform 
random reads and writes using the first PCB, the programmer must either move the first 

i• 	wil FCB or change the default DTA address. Otherwise, the first FCB's random record fi e ld  

overlap the start of the default DTA. See PROGRAMMING IN THE MS-DOS ENVIRON-

MENT; PROGRAMMING FOR MS-DOS: File and Record Management. 

110 	The MS-DOS Encyclopedia 



Article 4: Structure of an 

PSP008011 (Command Mil and Default DM) The default DTA resides in the entire sec-
ond half (128 bytes) of the PSP. MS-DOS uses this area of memory as the default record 
buffer if the program uses the FCB-style file access functions. Again, MS-DOS inherited 
this location from CP/M. (MS-DOS provides a function the program can call to change the 
address MS-DOS will use as the current DTA. See SYSTEM CALLS: INTERRUPT 211): Func-
tion IAH.) Because the default DTA serves no purpose until the program performs some 
file activity that requires it, MS-DOS places the command tail in this area for the program 
to examine. The command tail consists of any text the user types following the program 
name when executing the program. Normally, an ASCII space (20H) is the first character 
in the command tail, but any character MS-DOS recognizes as a separator can occupy this 
position. MS-DOS stores the command-tail text starting at offset 81H and always places an 
ASCII carriage return (ODH) at the end of the text. As an additional aid, it places the length 
of the command tail at offset 80H. This length includes all characters except the final ODH. 
For example, the command line 

C>DOIT WITH CLASS <Enter> 

will result in the program DOIT being executed with PSP:0080H containing 

OB 20 57 49 54 48 20 43 4C 41 53 53 OD 

lenspW I T H spCL AS S Cr 

The stack 

Because .EXE-style programs did not exist under CP/M, MS-DOS expects .EXE programs 
to operate in strictly MS-DOS fashion. For example, MS-DOS expects the .EXE program to 
supply its own stack. (Figure 4-1 shows the program's stack as the top box in the diagram.) 

Microsoft's high-level-language compilers create a stack themselves, but when writing in 
assembly language the programmer must specifically declare one or more segments with 
the STACK combine type. If the programmer declares multiple stack segments, possibly in 
different source modules, the linker combines them into one large segment. See Control-
ling the .EXE Program's Structure below. 

Many programmers declare their stack segments as preinitialized with some recognizable 
repeating string such as *STACK This makes it possible to examine the program's stack in 
memory (using a debugger such as DEBUG) to determine how much stack space the pro-
gram actually used. On the other hand, if the stack is left as uninitialized memory and 
linked at the end of the .EXE program, it will not require space within the .EXE file. (The 
reason for this will become more apparent when we examine the structure of a .EXE file.) 

Note: When multiple stack segments have been declared in different .ASM files, the 
Microsoft Object Linker (LINK) correctly allocates the total amount of stack space speci-
fied in all the source modules, but the initialization data from all modules is overlapped 
module by module at the high end of the combined segment. 

An important difference between .COM and .EXE programs is that MS-DOS preinitializes 
a .COM program's stack with a termination address before transferring control to the pro-
gram. MS-DOS does not do this for .EXE programs, so a .EXE program cannot simply 
execute an 8086-family RET instruction as a means of terminating. 

Section IL Programming in the ALS-INDS Environment 	111 



Part B: Programming for MS-DOS 

Note: In the assembly-language files generated for a Microsoft C program or for programs 
in most other high -level-languages, the compiler's placement of a RET instruction at the 
end of the main function/subroutine/procedure might seem confusing. After all, MS-Dos 
does not place any return address on the stack. The compiler places the PET at the end of 
wain because main does not receive control directly from MS-DOS. A library initializa-
tion routine receives control from MS-DOS; this routine then cal Is main. When main per-
forms the RET, it returns control to a library termination routine, which then terminates 
back to MS-DOS in an approval manner. 

Preallocated memory 

While loading a .EXE program, MS-DOS performs several steps to determine the initial 
amount of memory to be allocated to the program. First, MS-DOS reads the two values the 
linker places near the start of the .EXE header: The first value, MINALLOC, indicates the 
minimum amount of extra memory the program requires to start executing; the second 
value, MAXALLOC, indicates the maximum amount of extra memory the program would 
like allocated before it starts executing. Next, MS-DOS locates the largest free block of 
memory available. If the size of the program's image within the .EXE file combined with 
the value specified for MINALLOC exceeds the memory block it found, MS-DOS returns 
an error to the process trying to load the program. If that process is COMMAND.COM , 
COMMAND.COM  then displays a Program too big to fit in memory error message and 
terminates the user's execution request. If the block exceeds the program's MINALLOC 
requirement, MS-DOS then compares the memory block against the program's image 
combined with the MAXALLOC request. If the free block exceeds the maximum memory 
requested by the program, MS-DOS allocates only the maximum request; otherwise, it 
allocates the entire block. MS-DOS then builds a PSP at the start of this block and loads 
the program's image from the .EXE file into memory following the PSP. 

This process ensures that the extra memory allocated to the program will immediately 
follow the program's image. The same will not necessarily be true for any memory 
MS-DOS allocates to the program as a result of MS-DOS function calls the program per-
forms during its execution. Only function calls requesting MS-DOS to increase the initial 
allocation can guarantee additional contiguous memory. (Of course, the granting of such 
increase requests depends on the availability of free memory following the initial 
allocation.) 

Programmers writing .EXE programs sometimes find the lack of keywords or compiler/ 
assembler switches that deal with MINALLOC (and possibly MAXALLOC) confusing. The 
programmer never explicitly specifies a MINALLOC value because LINK sets MINALLOC 
to the total size of all uninitialized data and/or stack segments linked at the very end of the 
program. The MINALLOC field allows the compiler to indicate the size of the initialized 
data fields in the load module without actually including the fields themselves, resulting in 
a smaller .EXE program file. For LINK to minimize the size of the .EXE file, the program 
must be coded and linked in such a way as to place all uninitialized data fields at the end 
of the program. Microsoft high-level-language compilers handle this automatically; 
assembly-language programmers must give LINK a little help. 

112 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

Note: Beginning and even advanced assembly-language programmers can easily fall into 
an argt anent with the assembler over field addressing when attempting to place data fields 
aftcr !lie code in the source file. This argument can be avoided if programmers use the 
SEGMENT and GROUP assembler directives. See Controlling the .EXE Program's Struc-
ture below. 

No reliable method exists for the linker to determine the correct MAXALLOC value 
required by the .EXE program. Therefore, LINK uses a "safe" value of FFFFH, which 
causes MS - DOS to allocate all of the largest block of free memory—which is usually all 
free memory — to the program. Unless a program specifically releases the memory for 
which it has no use, it denies multitasking supervisor programs, such as IBM's TopView, 
any memory in which to execute additional programs—hence the rule that a well-
behaved program releases unneeded memory during its initialization. Unfortunately, this 
memory conservation approach provides no help if a multitasking supervisor supports the 
ability to load several programs into memory without executing them. Therefore, pro-
grams that have correctly established MAXALLOC values actually are well-behaved 
programs. 

To this end, newer versions of Microsoft LINK include the /CPARMAXALLOC switch 
to permit specification of the maximum amount of memory required by the program. The 
/CPARMAXALLOC switch can also be used to set MAXALLOC to a value that is known to 
be less than MINALLOC. For example, specifying a MAXALLOC value of 1 (/CP:1) forces 
MS-DOS to allocate only MINALLOC extra paragraphs to the program. In addition, 
Microsoft supplies a program called EXEMOD with most of its languages. This program 
permits modification of the MAXALLOC field in the headers of existing .EXE programs. 
See Modifying the .EXE File Header below. 

The registers 

Figure 4-1 gives a general indication of how MS-DOS sets the 8086-family registers 
before transferring control to a .EXE program. MS-DOS determines most of the original 
register values from information the linker places in the .EXE file header at the start of the 
.EXE file. 

MS-DOS sets the SS register to the segment (paragraph) address of the start of any seg-
ments declared with the STACK combine type and sets the SP register to the offset from SS 
of the byte immediately after the combined stack segments. (If no stack segment is 

declared, MS-DOS sets SS:SP to CS:0000.) Because in the 8086-family architecture a stack 
grows from high to low memory addresses, this effectively sets SS:SP to point to the base of 
the stack. Therefore, if the programmer declares stack segments when writing an assem-
bly-language program, the program will not need to initialize the SS and SP registers. 
Microsoft's high-level-language compilers handle the creation of stack segments automati-
cally. In both cases, the linker determines the initial SS and SP values and places them in 
the header at the start of the .EXE program file. 

Unlike its handling of the SS and SP registers, MS-DOS does not initialize the DS and ES 
registers to any data areas of the .EXE program. Instead, it points DS and ES to the start of 

Section Ii Programming in the MS-DOS Environment 	113 



Part II: Prugramming for MS-DOS 

the PSP. It does this for 1 woprimary reaSoilS; F irst, 	uses the DS and ES registe rs to  
tell the program the address of t he 	

t, 
PSP; second, most program 	}: s start .) examinitig th e  - 

command tail \vithin the PSP. Because die program starts without I )S pointing to the (f ah  
segments, the program must initialize DS and (opt ionally) ional ly )  ES to uunt to the data segme; 

betore it starts trying to access any fields in t Imse segments. lInlike .CONI programs, • ExE s  
programs can do this easily because they can make direct refere nces to segments, as 
follows: 

NOV 	AX, SEC DATA_SEGMENT_OR_GROUP_NAME  

NOV 	DS,AX 
NOV 	ES,AX 

High-level-language programs need not initialize and maintain DS and ES; the compiler 
and library support routines do this. 

In addition to pointing DS and ES to the PSP, MS-DOS also sets AI-I and AL to reflect the 
validity of the drive identifiers it placed in the two PCBs contained in the PSP. MS-DOS sets 
AL to OFFH if the first FCI3 at PSP:00501 was initialized with a nonexistent drive identifier ;  
otherwise, it sets AL to zero. Similarly, MS-DOS sets AH to reflect the drive identifier 
placed in the second ' ,CB at PSP:006CH. 

When MS-DOS analyzes the first two command-line parameters following the program 
name in order to build the first and second FCBs, it treats any character followed by a 
colon as a drive prefix. If the drive prefix consists of a lowercase letter (ASCII a through 
z), MS-DOS starts by converting the character to uppercase (ASCII A through Z). Then it 
subtracts 40H from the character, regardless of its original value. This converts the drive 
prefix letters A through Z to the drive codes 01I-I through MIT, as required by the two 
FCBs. Finally, MS-DOS places the drive code in the appropriate FCB. 

This process does not actually preclude invalid drive specifications from being placed in 
the FCBs. For instance, MS-DOS will accept the drive prefix !: and place a drive code of 
0E1H in the FCB = 21H; 21H-40H = 0E1H). However, MS-DOS will then check the drive 
code to see if it represents an existing drive attached to the computer and will pass a value 
of OFFH to the program in the appropriate register (AL or AH) if it does not. 

As a side effect of this process, MS-DOS accepts qb: as a valid drive prefix because the 
subtraction of 40H converts the @ character (40H) to 0011 MS-DOS accepts the 00H value 
as valid because a 00H drive code represents the current default drive. MS-DOS will leave 
the FCB's drive code set to 00H rather than translating it to the code for the default drive 
because the MS-DOS function calls that use FCBs accept the 00H code. 

Finally, MS-DOS initializes the CS and IP registers, transferring control to the program's 
entry point. Programs developed using high-level-language compilers usually receive con-
trol at a library initialization routine. A programmer writing an assembly-language pro

-
gram using the Microsoft Macro Assembler (MASM) can declare any label within the 

114 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

prora:n as the entry point by placing the label after the END statement as the last line of the 
program: 

END 	ENTRY_POINT_LASEL 

With multiple source files, only one of the files should have a label following the END 
statement. If more than one source file has such a label, LINK uses the first one it encoun-
ters as the entry point. 

The other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when 
the program receives control from MS-DOS. Once again, high-level-language program-
mers can ignore this fact—the compiler and library support routines deal with the situa-
tion. However, assembly-language programmers should keep this fact in mind. It may give 
needed insight sometime in the future when a program functions at certain times and 
not at others. 

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to 
some predictable but undocumented state. For instance, some debuggers may predictably 
set BP to zero before starting program execution. However, a program must not rely on 
such debugger actions, because MS-DOS makes no such promises. Situations like this 
could account for a program that fails when executed directly under MS-DOS but works 
fine when executed using a debugger. 

Terminating the .EXE program 

After MS-DOS has given the .EXE program control and it has completed whatever task 
it set out to perform, the program needs to give control back to MS-DOS. Because of 
MS-DOS's evolution, five methods of program termination have accumulated—not 
including the several ways MS-DOS allows programs to terminate but remain resident 
in memory. 

Before using any of the termination methods supported by MS-DOS, the program should 
always close any files it had open, especially those to which data has been written or 
whose lengths were changed. Under versions 2.0 and later, MS-DOS closes any files 
opened using handles. However, good programming practice dictates that the program 
not rely on the operating system to close the program's files. In addition, programs written 
to use shared files under MS-DOS versions 3.0 and later should release any file locks before 
closing the files and terminating. 

The Terminate Process with Return Code function 

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with 
Return Code function (4CH) is recommended for programs running under MS-DOS ver-
sion 2.0 or later. This method is one of the easiest approaches to terminating any pro-
gram, regardless of its structure or segment register settings. The Terminate Process with 
Return Code function call simply consists of the following: 

MOV 	AH, 110H 	 ;load the MS-DOS function code 

NOV 	AL,RETURN_CODE 	 ;load the termination code 

INT 	211-i 	 ;call MS-DOS to terminate program 

Section IL Programming in the MS-DOS Environment 	115 



Part 13: Programming for MS-DOS 

The example loads the AH register with the Terminate Process with Return Code function  

code. Then it loads the AL register with a return code. Normally, the return code repre-
sents the reason the program terminated or the result of any operation the program 

performed. 

A program  that executes another program as a child process can recover and analyze the 
child program's return code if the child process used this termination method. Likewise, 
the child process can recover the RETURN_CODE returned by any program it executes as 
a child process. When a program is terminated using this method and control returns to 
MS-DOS, a batch (.BAT) file can be used to test the terminated program's return code 
using the IF ERRORLEVEL statement. 

Only two general conventions have been adopted for the value of RETURN_CODE: 
First, a RETURN_CODE value of 00H indicates a normal no-error termination of the 
program; second, increasing RETURN_CODE values indicate increasing severity of con-
ditions under which the program terminated. For instance, a compiler could use the 
RETURN_CODE 00H if it found no errors in the source file, 01H if it found only warning 

errors, or 02H if it found severe errors. 

If a program has no need to return any special RETURN_CODE values, then the following 
instructions will suffice to terminate the program with a RETURN_CODE of 00H: 

NOV 	AX,4C00H 

INT 	21H 

Apart from being the approved termination method, Terminate Process with Return Code 
is easier to use with .EXE programs than any other termination method because all other 
methods require that the CS register point to the start of the PSP when the program termi-
nates. This restriction causes problems for .EXE programs because they have code seg-
ments with segment addresses different from that of the PSP. 

The only problem with Terminate Process with Return Code is that it is not available under 
MS-DOS versions earlier than 2.0, so it cannot be used if a program must be compatible 
with early MS-DOS versions. However, Figure 4-3 shows how a program can use the 
approved termination method when available but still remain pre-2.0 compatible. See The 

Warm Boot/Terminate Vector below. 

TEXT 	SEGMENT PARA PUBLIC 'CODE' 

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING 

TERM_VECTOR 	DD 

ENTRY_PROC 	PROC 	FAR 

;save pointer to termination vector in PSP 

NOV 
	WORD PTR CS:TERM_VECTOR+0,0000h ;save offset of Warm Boot vector 

NOV 
	WORD PTR CS:TERM_VECTOR+2,DS 	;save segment address of PSP 

Figure 4-3. Terminating properly under any MS-DOS version. 

116 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

;""" riaQi, main task here *I'm 

;dul-rt.ine which MC-DOS version in active, take jump if 2.0 or later 

MOV Alt, 30h ;load Get MS-DOS Version Number function code 
INT 21h ;call MS-DOS to get version number 
OR AL, Al. ;see 	if pre-2.0 MS-DOS 
tNi. TERM,0200 ;jump 	if 2.0 or 	later 

;terminate under pre-2.0 MS-DOS 

IMP 

;terminate 

CS:TERM_VECTOR 

under MS-DOS 2.0 or 

;jump 

later 

to Warm Boot vector in PS? 

TERM_0200: 1 NOV AX,4C0Oh ;load 
;and 

MS-DOS 

return 

termination 

code 

function code 

INT 21h ;call MS-DOS to terminate 

ENTRY_PROC ENDP 

TEXT 	ENDS 

END 	ENTRY_PROC 	;define entry point 

Figure 4-3. Continued. 

The Terminate Program interrupt 

Before MS-DOS version 2.0, terminating with an approved method meant executing 
an INT 20H instruction, the Terminate Program interrupt. The INT 20H instruction was 
replaced as the approved termination method for two primary reasons: First, it did not 
provide a means whereby programs could return a termination code; second, CS had 
to point to the PSP before the INT 20H instruction was executed. 

The restriction placed on the value of CS at termination did not pose a problem for .COM 
programs because they execute with CS pointing to the beginning of the PSP. A .EXE pro-
gram, on the other hand, executes with CS pointing to various code segments of the pro-
gram, and the value of CS cannot be changed arbitrarily when the program is ready to 
terminate. Because of this, few .EXE programs attempt simply to execute a Terminate Pro-
gram interrupt from directly within their own code segments. Instead, they usually use 
the termination method discussed next. 

The Warm Boot/Terminate vector 

The earlier discussion of the structure of the PSP briefly covered one older method a .EXE 
program can use to terminate: Offset 00H within the PSP contains an TNT 20H instruction 
to which the program can jump in order to terminate. MS-DOS adopted this technique to 
support the many CP/M programs ported to MS-DOS. Under CP/M, this PSP location was 
referred to as the Warm Boot vector because the CP/M operating system was always 
reloaded from disk (rebooted) whenever a program terminated. 

Section M Programming in the MS-DOS Environment 	117 

V -  • 



Part a Programming for MS-DOS 

Because offset 0014 in the PSP contains an IN'I' 2011 instruction, jumping to that loc ation  
terminates a program in the same manner as an IN'!  2011 included directly within th e pro.  
gram, but with one important difference: By jumping to PS1 1 :000011, the progratn sets th e  
CS register to point to the beginning of the PSP, thereby satisfying the only restriction 
imposed on executing the Terminate Program interrupt. The discivision Of MS-DOS Punt.. 
non 4CH gave an example of how a .EXE program can tenninam via PSP:000011. The ex-
ample first asks MS-DOS for its version number and Men terminates via PSP:000011 only 
under versions of MS-DOS earlier than 2.0. Programs can also use PSP:000011 under 
MS-DOS versions 2.0 and later; the example uses Function 4CH simply because it is 
preferred under the later MS-DOS versions. 

The RET instruction 

The other popular method used by CP/M programs to terminate involved simply execut-
ing a RET instruction. This worked because CP/M pushed the address of the Warm Boot 
vector onto the stack before giving the program control. MS-DOS provides this support 
only for .COM-style programs; it does not push a termination address onto the stack 
before giving .EXE programs control. 

The programmer who wants to use the RET instruction to return to MS-DOS can use the 
variation of the Figure 4-3 listing shown in Figure 4-4. 

TEXT 	SEGMENT PARA PUBLIC 'CODE' 

ASSUME CS:TEXT,DS:NOTHING,ES:NOTHING,SS:NOTHING 

ENTRY_PROC 	PROC 	FAR 	;make proc FAR so RET will be FAR 

;Push pointer to termination vector in PSP 
PUSH 	DS 	 ;push PSP's segment address 
XOR 	AX,AX 	 ;ax = 0 = offset of Warm Boot vector in PSP 
PUSH 	AX 	 ;push Warm Boot vector offset 

;***** Place main task here .(**** 

;Determine which MS-DOS version is active, take jump if 2.0 or later 

MOV AH,30h 
;load Get MS-DOS Version Number function code 

TNT 21h ;call MS-DOS to get version number 
OR AL,AL ;see if pre-2.0 MS-DOS 
JNZ TERM_0200 ;jump if 2.0 or later 

;Terminate under pre-2.0 MS-DOS (this is a FAR proc, so RET will be FAR) RET 	 ;pop PSP:00H into CS:IP to terminate 

Figure 4-4. Using RET to return control to MS-DOS. 
(more) 

118 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

;Terminate under MS-DOS 2.0 or later 

TERm_0200: 

	

MOV 	AX,4C00h 	;AH = MS-DOS Terminate Process with Return Code 

;function code, AL = return code of 00H 

	

INT 	21h 	 ;call MS-DOS to terminate 

	

ENTRY_PROC 	ENDP 

TEXT 	ENDS 

	

END 	ENTRY_PROC 	;declare the program's entry point 

Figure 4-4. Continued. 

The Terminate Process function 

The final method for terminating a .EXE program is Interrupt 2111 Function 00H (Termi-
nate Process). This method maintains the same restriction as all other older termination 
methods: CS must point to the PSP. Because of this restriction, .EXE programs typically 
avoid this method in favor of terminating via PSP:0000H, as discussed above for programs 
executing under versions of MS-DOS earlier than 2.0. 

Terminating and staying resident 

A .EXE program can use any of several additional termination methods to return con-
trol to MS-DOS but still remain resident within memory to service a special event. See 
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING MS-DOS: Terminate-and-
Stay-Resident Utilities. 

Structure of the .EXE files 

So far we've examined how the .EXE program looks in memory, how MS-DOS gives the 
program control of the ciomputer, and how the program should return control to MS-DOS. 
Next we'll investigate what the program looks like as a disk file, before MS-DOS loads it 
into memory. Figure 4-5 shows the general structure of a .EXE file. 

The file header 

Unlike .COM program files, .EXE program files contain information that permits the 
.EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces-
sors. The linker places all this extra information in a header at the start of the .EXE file. 
Although the .EXE file structure could easily accommodate a header as small as 32 bytes, 
the linker never creates a header smaller than 512 bytes. (This minimum header size corre-
sponds to the standard record size preferred by MS-DOS.) The .EXE file header contains 
the following information, which MS-DOS reads into a temporary work area in memory 
for use while loading the .EXE program: 

00-01H (.EXE Signature) MS-DOS does not rely on the extension (.EXE or .COM) to 
determine whether a file contains a .COM or a .EXE program. Instead, MS-DOS recognizes 
the file as a .EXE program if the first 2 bytes in the header contain the signature 4DH 5AH 

Section IL Programming in the MS-DOS Environment 	119 



Use Header 

Paras at 08H 

(load module 	10. 
always starts on 

paragraph boundary) 

Use Reloc 

Thl Ofs at 18H 

(offset is from 

start of file) 

End of file lot.  
i 	 indibated by File Pages at 04H 

V 	 i 
i 	  

OxH 

1 itH 1110 

Signature 

4DH I 5AH 

Last Page Size 

In bytlhi byt 
File Pages Reloc Items 

lo byt Ihi byt lo bytihi byt 
Header Paras 

lo bytthi byt 
MINALLOC 

lo bytlhi byt 
MAXALLOC PreReloc SS 

in bytthi byt lo byt Ihi  byt 
Initial SP 

ofs lopfs hi 
Neg Chksum 
lo bytthi byt 

Initial IP 	Pre Reloc CS 
ofs lopfs hi_seg lolseg hi 

Reloc Tbt Ofs 
lo bytlhi byt 

Overlay Num 
lo bytlhi byt 

Reserved 

Seg Relocation Ptr #1 
ofs lo pfs hitseg lotseg hi 

Seg Relocation Ptr #2 
ofs lo pfs hilseg lotseg hi 

Seg Relocation Ptr #3 
ofs lo pfs hilseg lotseg hi 

Seg Relocation Ptr #4 
ofs lotofs hi Iseg lotseg hi 

Seg Relocation Ptr #n-3 
ofs lopfs hi Iseg loiseg hi 

Seg Relocation Ptr #n-2 

ofs lo pfs hi Iseg Imseg hi 
Seg Relocation Ptr #n-1 
ofs lo pfs hi Iseg lotseg hi 

Seg Relocation Ptr #n 
ofs lopfs hi I seg loiseg hi 

— 

• 
Program image 	  

A 
(load module) 

•
Use Last Paf Size at 02H 	Final 512-byte 

A 
page as 

Part B: Programming for MS-DOS 

x0H x1H x21-I x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH itDH icEH icFH 

Use Reloc 

41 Items 

at 06H 

Figure 4-5. Structure of a .EXE file. 

(ASCII characters M and Z). If either or both of the signature bytes contain other values, 
MS-DOS assumes the file contains a .COM program, regardless of the extension. The 
reverse is not necessarily true — that is, MS-DOS does not accept the file as a .EXE pro-
gram simply because the file begins with a .EXE signature. The file must also pass several 
other tests. 

02-03H (Last Page Size) The word at this location indicates the actual number of bytes 
in the final 512-byte page of the file. This word combines with the following word to deter-
mine the actual size of the file. 

04-05H (File Pages) This word contains a count of the total number of 512-byte pages 
required to hold the file. If the file contains 1024 bytes, this word contains the value 0002H; 
if the file contains 1025 bytes, this word contains the value 0003H. The previous word (Last 
Page Size, 02-03H) is used to determine the number of valid bytes in the final 512-byte 
page. Thus, if the file contains 1024 bytes, the Last Page Size word contains 0000H because 
no bytes overflow into a final partly used page; if the file contains 1025 bytes, the Last Page 
Size word contains 0001H because the final page contains only a single valid byte (the 
1025th byte). 

06-07H (Relocation Items) This word gives the number of entries that exist in the reloca-
tion pointer table. See Relocation Pointer Table below. 

120 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

08-09H (Header Paragraphs) This word gives the size of the .EXE file header in 16-byte 
paragraphs. It indicates the offset of the program's compiled/assembled and linked image 
(the load module) within the .EXE file. Subtracting this word from the two file-size words 
starting at 02H and 04H reveals the size of the program's image. The header always spans 
an even multiple of 16-byte paragraphs. For example, if the file consists of a 512-byte 
header and a 513-byte program image, then the file's total size is 1025 bytes. As discussed 
before, the Last Page Size word (02-03H) will contain 000111 and the File Pages word 
(04-05H) will contain 0003H. Because the header is 512 bytes, the Header Paragraphs 
word (08-09H) will contain 32 (0020H). (That is, 32 paragraphs times 16 bytes per para-
graph totals 512 bytes.) By subtracting the 512 bytes of the header from the 1025-byte total 
file size, the size of the program's image can be determined—in this case, 513 bytes. 

0A-OBH (MINALLOC) This word indicates the minimum number of 16-byte paragraphs 
the program requires to begin execution in addition to the memory required to hold 
the program's image. MINALLOC normally represents the total size of any uninitialized 
data and/or stack segments linked at the end of the program. LINK excludes the 
space reserved by these fields from the end of the .EXE file4o avoid wasting disk space. 
If not enough memory remains to satisfy MINALLOC when loading the program, MS-
DOS returns an error to the process trying to load the program. If the process is 
COMMAND.COM, COMMAND.COM  then displays a Program too big to fit in memory 
error message. The EXEMOD utility can alter this field if desired. See Modifying the .EXE 
File Header below. 

0C-ODH (MAXALLOC) This word indicates the maximum number of 16-byte p - ragraphs 
the program would like allocated to it before it begins execution. MAXALLOC indicates 
additional memory desired beyond that required to hold the program's image. MS-DOS 
uses this value to allocate MAXALLOC extra paragraphs, if available. If MAXALLOC para-
graphs are not available, the program receives the largest memory block available— at 
least MINALLOC additional paragraphs. The programmer could use the MAXALLOC field 
to request that MS-DOS allocate space for use as a print buffer or as a program-maintained 
heap, for example. 

Unless otherwise specified with the /CPARMAXALLOC switch at link time, the linker sets 
MAXALLOC to FFFFH. This causes MS-DOS to allocate all of the largest block of memory 
it has available to the program. To make the program compatible with multitasking super-
visor programs, the programmer should use /CPARMAXALLOC to set the true maximum 
number of extra paragraphs the program desires. The EXEMOD utility can also be used 
to alter this field. 

Note: If both MINALLOC and MAXALLOC have been set to 0000H, MS-DOS loads the 
program as high in memory as possible. LINK sets these fields to 0000H if the /HIGH 
switch was used; the EXEMOD utility can also be used to modify these fields. 

OE-OFH (Initial SS Value) This word contains the paragraph address of the stack segment 
relative to the start of the load module. At load time, MS-DOS relocates this value by adding 
the program's start segment address to it, and the resulting value is placed in the SS regis-
ter before giving the program control. (The start segment corresponds to the first segment 
boundary in memory following the PSP.) 

Section IL Programming in the MS-DOS Environment 	121 



Part B: Programming for MS-DOS 

10-11H (Initial SP Value) This word contains the absolute value that MS-DOS loads 
into the SP register before giving the program control. Because MS-DOS always loads pro-
grams starting on a segment address boundary, and because the linker knows the size of 
the stack segment, the linker is able to determine the correct SP offset at link time; there-
fore, MS-DOS does not need to adjust this value at load time. The EXEMOD utility can be 
used to alter this field. 

12-13H (Complemented Checksum) This word contains the one's complement of the 
summation of all words in the .EXE file. Current versions of MS-DOS basically ignore this 
word when they load a .EXE program; however, future versions might not. When LINK 
generates a .EXE file, it adds together all the contents of the .EXE file (including the .EXE 
header) by treating the entire file as a long sequence of 16-bit words. During this addition, 
LINK gives the Complemented Checksum word (12-13H) a temporary value of 0000H. If 
the file consists of an odd number of bytes, then the final byte is treated as a word with a 
high byte of 00H. Once LINK has totaled all words in the .EXE file, it performs a one's 
complement operation on the total and records the answer in the .EXE file header at 
offsets 12-13H. The validity of a .EXE file can then be checkea by performing the same 
word-totaling process as LINK performed. The total should be FFFFH, because the total 
will include LINK's calculated complemented checksum, which is designed to give the file 
the FFFFH total. 

An example 7-byte .EXE file illustrates how .EXE file checksums are calculated. (This 
is a totally fictitious file, because .EXE headers are never smaller than 512 bytes.) If this fic 
titious file contained the bytes 8CH C8H 8EH D8H BAH 10H B4H, then the file's total 
would be calculated using C88CH+D88EH+10BAH+00B4H=1B288H. (Overflow past 16 
bits is ignored, so the value is interpreted as B288H.) If this were a valid .EXE file, then 
the B288H total would have been FFFFH instead. 

14-15H (Initial IP Value) This word contains the absolute value that MS-DOS loads into 
the IP register in order to transfer control to the program. Because MS-DOS always loads 
programs starting on a segment address boundary, the linker can calculate the correct IP 
offset from the initial CS register value at link time; therefore, MS-DOS does not need 
to adjust this value at load time. 

16-17H (Pre-Relocated Initial CS Value) This word contains the initial value, relative to 
the start of the load module, that MS-DOS places in the CS register to give the .EXE pro-
gram control. MS-DOS adjusts this value in the same manner as the initial SS value before 
loading it into the CS register. 

18-19H (Relocation Table Offset) This word gives the offset from the start of the file to 
the relocation pointer table. This word must be used to locate the relocation pointer table, 
because variable-length information pertaining to program overlays can occur before the 
table, thus causing the position of the table to vary. 

14-1BH (Overlay Number) This word is normally set to 0000H, indicating that the .EXE 
file consists of the resident, or primary, part of the program. This number changes only in 
files containing programs that use overlays, which are sections of a program that remain 

122 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

on disk until the program actually requires them. These program sections are loaded into 
memory by special overlay managing routines included in the run-time libraries supplied 
with some Microsoft high-level-language compilers. 

The preceding section of the header (00-1BH) is known as the formatted area. Optional 
information used by high-level-language overlay managers can follow this formatted area. 
Unless the program in the .EXE file incorporates such information, the relocation pointer 
table immediately follows the formatted header area. 

Relocation Pointer Table The relocation pointer table consists of a list of pointers to words 
within the .EXE program image that MS-DOS must adjust before giving the program con-
trol. These words consist of references made by the program to the segments that make up 
the program. MS-DOS must adjust these segment address references when it loads the pro-
gram, because it can load the program into memory starting at any segment address 
boundary. 

Each pointer in the table consists of a doubleword. The firsCword contains an offset from 
the segment address given in the second word, which in turn indicates a segment address 
relative to the start of the load module. Together, these two words point to a third word 
within the load module that must have the start segment address added to it. (The start seg-
ment corresponds to the segment address at which MS-DOS started loading the program's 

.EXE File 

End of file 

Re! Seg ReM:103CH 
Abs Seg Ref=25D1H 

Load module 

Memory 

003CH Relocation pointer ro. +  2595H 	Re! Seg Ref=003CH 0002H:0005H 	 
I 	25D1H 	 Abs Seg Ref=25D11-1 

Relocation pointer table 9' 0002H:0005H I 	 Load module 
	  +2595H A 	 I 	"Start Seg" 

2597H:0005H 	2595H ■ 	 
Formatted header area 	 Program segment prefix 

	 Start of file 

Figure 4-6 The .EXE file relocation procedure. 

Section 11 Programming in the MS-DOS Environment 	123 



Part B: Programming for MS-DOS 

image, immediately following the PSP.) Figure 4-6 shows the entire procedure MS-DOS 
performs for each relocation table entry. 

The load module 

The load module starts where the .EXE header ends and consists of the fully linked image 
of the program. The load module appears within the .EXE file exactly as it would appear in 
memory if MS-DOS were to load it at segment address 0000H. The only changes MS-DOS 
makes to the load module involve relocating any direct segment references. 

Although the .EXE file contains distinct segment images within the load module, it pro-
vides no information for separating those individual segments from one another. Existing 
versions of MS-DOS ignore how the program is segmented; they simply copy the load 
module into memory, relocate any direct segment references, and give the program 
control. 

Loading the .EXE program 

So far we've covered all the characteristics of the .EXE program as it resides in memory 
and on disk. We've also touched on all the steps MS-DOS performs while loading the .EXE 
program from disk and executing it. The following list recaps the .EXE program loading 
process in the order in which MS-DOS performs it: 

1. MS-DOS reads the formatted area of the header (the first 1BH bytes) from the .EXE 
file into a work area. 

2. MS-DOS determines the size of the largest available block of memory. 
3. MS-DOS determines the size of the load module using the Last Page Size (offset 

02H), File Pages (offset 04H), and Header Paragraphs (offset 08H) fields from the 
header. An example of this process is in the discussion of the Header Paragraphs 
field. 

4. MS-DOS adds the MINALLOC field (offset OAH) in the header to the calculated load-
module size and the size of the PSP (100H bytes). If this total exceeds the size of the 
largest available block, MS-DOS terminates the load process and returns an error to 
the calling process. If the calling process was COMMAND.COM , COMMAND.COM  
then displays a Program too big to fit in memory error message. 

5. MS-DOS adds the MAXALLOC field (offset OCH) in the header to the calculated 
load-module size and the size of the PSP. If the memory block found earlier exceeds 
this calculated total, MS-DOS allocates the calculated memory size to the program 
from the memory block; if the calculated total exceeds the block's size, MS-DOS 
allocates the entire block. 

6. If the MINALLOC and MAXALLOC fields both contain 0000H, MS-DOS uses the 
calculated load-module size to determine a start segment. MS-DOS calculates the 
start segment so that the load module will load into the high end of the allocated 
block. If either MINALLOC or MAXALLOC contains nonzero values (the normal 
case), MS-DOS establishes the start segment as the segment following the PSP. 

7. MS-DOS loads the load module into memory starting at the start segment. 

124 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

8. MS-DOS reads the relocation pointers into a work area and relocates the load mod-
ule's direct segment references, as shown in Figure 4-6. 

9. MS-DOS builds a PSP in the first 100H bytes of the allocated memory block. While 
building the two FCBs within the PSP, MS-DOS determines the initial values for the 
AL and AH registers. 

10. MS-DOS sets the SS and SP registers to the values in the header after the start seg-
ment is added to the SS value. 

11. MS-DOS sets the DS and ES registers to point to the beginning of the PSP. 
12. MS-DOS transfers control to the .EXE program by setting CS and IP to the values in 

the header after adding the start segment to the CS value. 

Controlling the .EXE program's structure 

We've now covered almost every aspect of a completed .EXE program. Next, we'll discuss 
how to control the structure of the final .EXE program from the source level. We'll start by 
covering the statements provided by MASM that permit the programmer to define the 
structure of the program when programming in assembly lariguage. Then we'll cover the 
five standard memory models provided by Microsoft's C and FORTRAN compilers (both 
version 4.0), which provide predefined structuring over which the programmer has 
limited control. 

The MASM SEGMENT directive 

MASM's SEGMENT directive and its associated ENDS directive mark the beginning and 
end of a program segment. Program segments contain collections of code or data that have 
offset addresses relative to the same common segment address. 

In addition to the required segment name, the SEGMENT directive has three optional 
parameters: 

segnarrte SEGMENT [align][combine]Pclassl 

With MASM, the contents of a segment can be defined at one point in the source file and 
the definition can be resumed as many times as necessary throughout the remainder of 
the file. When MASM encounters a SEGMENT directive with a segname it has previously 
encountered, it simply resumes the segment definition where it left off. This occurs regard-
less of the combine type specified in the SEGMENT directive—the combine type influ-
ences only the actions of the linker. See The combine Type Parameter below. 

The align type parameter 
The optional align parameter lets the programmer send the linker an instruction on how 
to align a segment within memory. In reality, the linker can align the segment only in rela-
tion to the start of the program's load module, but the result remains the same because 
MS-DOS always loads the module aligned on a paragraph (16-byte) boundary. (The PAGE 
align type creates a special exception, as discussed below.) 

The following alignment types are permitted: 

BYTE This align type instructs the linker to start the segment on the byte immediately 
following the previous segment. BYTE alignment prevents any wasted memory between 
the previous segment and the BYTE-aligned segment. 

Section IL Programming in the MS-DOS Environment 	125 



Pan 11: Programming for MS-DOS 

A minor disadvantage to BYTE alignment is that the 8086-family segment registers might 
not be able to directly address the start of the segment in all cases. Because they can 
address only on paragraph boundaries, the segment registers may have to point as many 
as 15 bytes behind the start of the segment. This means that the segment size should not 
be more than 15 bytes short of 64 KB. The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segment start and the paragraph 
addressing boundary. 

Another possible concern is execution speed on true 16-bit 8086-family microprocessors. 
When using non-8088 microprocessors, a program can actually run faster if the instruc-
tions and word data fields within segments are aligned on word boundaries. This permits 
the 16-bit processors to fetch full words in a single memory read, rather than having to per-
form two single-byte reads. The EVEN directive tells MASM to align instructions and data 
fields on word boundaries; however, MASM can establish this alignment only in relation to 
the start of the segment, so the entire segment must start aligned on a word or larger 
boundary to guarantee alignment of the items within the segment. 

WORD This align type instructs the linker to start the segment on the next word bound-
ary. Word boundaries occur every 2 bytes and consist of all even addresses (addresses in 
which the least significant bit contains a zero). WORD alignment permits alignment of data 
fields and instructions within the segment on word boundaries, as discussed for the BYTE 
alignment type. However, the linker may have to waste 1 byte of memory between the pre-
vious segment and the word-aligned segment in order to position the new segment on a 
word boundary. 

Another minor disadvantage to WORD alignment is that the 8086-family segment registers 
might not be able to directly address the start of the segment in all cases. Because they can 
address only on paragraph boundaries, the segment registers may have to point as many as 
14 bytes behind the start of the segment. This means that the segment size should not be 
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segment start and the paragraph 
addressing boundary. 

PARA This align type instructs the linker to start the segment on the next paragraph 
boundary. The segments default to PARA if no alignment type is specified. Paragraph 
boundaries occur every 16 bytes and consist of all addresses with hexadecimal values end- 
ing in zero (0000H, 0010H, 0020H, and so forth). Paragraph alignment ensures that the 
segment begins on a segment register addressing boundary, thus making it possible to ad-
dress a full 64 KB segment. Also, because paragraph addresses are even addresses, PARA 
alignment has the same advantages as WORD alignment. The only real disadvantage to 
PARA alignment is that the linker may have to waste as many as 15 bytes of memory 
between the previous segment and the paragraph-aligned segment. 

PAGE This align type instructs the linker to start the segment on the next page boundary. 
Page boundaries occur every 256 bytes and consist of all addresses in which the low 
address byte equals zero (0000H, 0100H, 0200H, and so forth). PAGE alignment ensures 

126 	The MS-DOS Encyclopedia 



Article 4: Structure of an Ant -du-fainn Drnryrn n1 

only that the linker positions the segment on a page boundary relative to the start of the 
load module. Unfortunately, this does not also ensure alignment of the segment on an 
absolute page within memory, because MS-DOS only guarantees alignment of the entire 
load module on a paragraph boundary. 

When a programmer declares pieces of a segment with the same name in different source 
modules, the align type specified for each segment piece influences the alignment of that 
specific piece of the segment. For example, assume the following two segment declara-
tions appear in different source modules: 

	

_DATA 	SEGMENT PARA PUBLIC 'DATA' 
D3 	'123' 

	

DATA 	ENDS 

	

_DATA 	SEGMENT PARA PUBLIC 'DATA' 
DB 	'456' 

_DATA ENDS 

The linker starts by aligning the first segment piece located in the first object module on a 
paragraph boundary, as requested. When the linker encounters the second segment piece 
in the second object module, it aligns that piece on the first paragraph boundary following 
the first segment piece. This results in a 13-byte gap between the first segment piece and 
the second. The segment pieces must exist in separate source modules for this to occur. If 
the segment pieces exist in the same source module, MASM assumes that the second seg-
ment declaration is simply a resumption of the first and creates an object module with 
segment declarations equivalent to the following: 

_DATA SEGMENT PARA PUBLIC 'DATA' 

DB 	'123' 
DB 	'956' 

DATA ENDS 

The combine type parameter 
The optional combine parameter allows the programmer to send directions to the linker 
on how to combine segments with the same segname occurring in different object mod-
ules. If no combine type is specified, the linker treats such segments as if each had a dif-
ferent segname. The combine type has no effect on the relationship of segments with 
different segnames. MASM and LINK both support the following combine types: 

PUBLIC This combine type instructs the linker to concatenate multiple segments having 
the same segname into a single contiguous segment. The linker adjusts any address refer-
ences to labels within the concatenated segments to reflect the new position of those 
labels relative to the start of the combined segment. This combine type is useful for ac-
cessing code or data in different source modules using a common segment register value. 

STACK This combine type operates similarly to the PUBLIC combine type, except for 
two additional effects: The STACK type tells the linker that this segment comprises part of 
the program's stack and initialization data contained within STACK segments is handled 
differently than in PUBLIC segments. Declaring segments with the STACK combine type 
permits the linker to determine the initial SS and SP register values it places in the .EXE 

Section IL Programming in the MS-DOS Environment 	127 



---„ 
Part B: Programming for MS-DOS  

file header. Normally, a programmer would declare only one STACK segment in one of  

source modules, If Pieces of the stack are declared in different 
source  modules, the linker r  

Will concatenate them in the same fashion as PUI3LIC segments. I lowever, initialization 
data declared within any STACK segment is placed at the high end of the combined STACK 
segments on a module-by-module basis. Thus, each successive module's initialization data 
overlays the previous module's data. At least one segment must be declared with the 	- 

STACK combine type; otherwise, the linker will issue a warning message because it Can-
not determine the program's initial SS and SP values. (The warning can be ignored if the 
program itself initializes SS and SP) 

COMMON This combine type instructs the linker to overlap multiple segments having 
the same segnante. The length of the resulting segment reflects the length of the longest 
segment declared. If any code or data is declared in the overlapping segments, the data 
contained in the final segments linked replaces any data in previously loaded segments. 
This combine type is useful when a data area is to be shared by code in different source 
modules. 

MEAIORY Microsoft's LINK treats this combine type the same as it treats the PUBLIC 
type. MASM, however, supports the MEMORY type for compatibility with other linkers 
that use Intel's definition of a MEMORY combine type. 

AT address This combine type instructs LINK to pretend that the segment will reside at 
the absolute segment address. LINK then adjusts all address references to the segment in 
accordance with the masquerade. LINK will not create an image of the segment in the 
load module, and it will ignore any data defined within the segment. This behavior is con-
sistent with the fact that MS-DOS does not support the loading of program segments into 
absolute memory segments. All programs must be able to execute from any segment ad-
dress at which MS-DOS can find available memory. The SEGMENT AT address combine 
type is useful for creating templates of various areas in memory outside the program. For 
instance, SEGMENT AT 0000H could be used to create a template of the 8086-family inter-
rupt vectors. Because data contained within SEGMENT AT address segments is suppressed 
by LINK and not by MASM (which places the data in the object module), it is possible to 
use .OBJ files generated by MASM with another linker that supports ROM or other absolute 
code generation should the programmer require this specialized capability. 

The class type parameter 
The class parameter provides the means to organize different segments into classifications. 
For instance, here are three source modules, each with its own separate code and data 
segments: 

;Module "A" 
A_DATA SEGMENT PAPA PUBLIC 'DATA' 
;Module "A" data fields 
A_DATA ENDS 
A_CODE SEGMENT PAPA PUBLIC 'CODE' 
;Module "A" code 
A_CODE ENDS 

END 

128 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

;Module 11 13" 

B_DATA SEGMENT PARA PUBLIC 'DATA' 
;Module "B" data fields 
B_DATA ENDS 

B_CODE SEGMDIT PARA PUBLIC 'CODE' 
;Module "B" code 
B_CODE END3 

END 

;Module "C" 

C_DATA SEGMENT PARA PUBLIC 'DATA' 

;Module "C" data fields 
C_DATA ENDS 

C_CODE SEGMENT PARA PUBLIC 'CODE' 
;Module "C" code 
C_CODE ENDS 

END 

If the 'CODE' and 'DATA' class types are removed from the SEGMENT directives shown 
above, the linker organizes the segments as it encounters them. If the programmer speci-
fies the modules to the linker in alphabetic order, the linker produces the following 
segment ordering: 

A_DATA 
A_CODE 

B_DATA 

B_CODE 
C_DATA 

C_CODE 

However, if the programmer specifies the class types shown in the sample source mod-
ules, the linker organizes the segments by classification as follows: 

'DATA' class: 	A_DATA 
B_DATA 
C_DATA 

'CODE' class: 	A_CODE 
B_CODE 

C_CODE 

Notice that the linker still organizes the classifications in the order in which it encounters 
the segments belonging to the various classifications. To completely control the order in 
which the linker organizes the segments, the programmer must use one of three basic 
approaches. The preferred method involves using the /DOSSEG switch with the linker. 
This produces the segment ordering shown in Figure 4-1. The second method involves 
creating a special source module that contains empty SEGMENT—ENDS blocks for all the 
segments declared in the various other source modules. The programmer creates the list 
in the order the segments are to be arranged in memory and then specifies the .OBJ file for 
this module as the first file for the linker to process. This procedure establishes the order 
of all the segments before LINK begins processing the other program modules, so the 

Section IL Programming In the MS-DOS Environment 	129 



Part II: Programming for MS-DOS 

program mer can  declare segments in these other modules in any convenient order. Fo r  

instance, the following source module rearranges the result of the previous example 
so  

that the linker places the 'CODE' class before the 'DATA' class: 

A_CODE SEGMENT PAPA PUBLIC 'CODE' 
A_CODE ENDS 

B_CODE SEGMENT PAPA PUBLIC 'CODE' 
B_CODE ENDS 

C_CODE SEGMENT PAPA PUBLIC 'CODE' 
C_CODE ENDS 

A_DATA SEGMENT PARA PUBLIC 'DATA' 
A_DATA ENDS 
B_DATA SEGMENT PAPA PUBLIC 'DATA' 
B_DATA ENDS 
C_DATA SEGMENT PAPA PUBLIC 'DATA' 

C_DATA ENDS 

END 

Rather than creating a new module, the third method places the same segment ordering 
list shown above at the start of the first module containing actual code or data that the 
programmer will be specifying for the linker. This duplicates the approach used by 
Microsoft's newer compilers, such as C version 4.0. 

The ordering of segments within the load module has no direct effect on the linker's 
adjustment of address references to locations within the various segments. Only the 
GROUP directive and the SEGMENT directive's combine parameter affect address 

adjustments performed by the linker. See The MASM GROUP Directive below. 

Note: Certain older versions of the IBM Macro Assembler wrote segments to the object 
file in alphabetic order regardless of their order in the source file. These older versions can 
limit efforts to control segment ordering. Upgrading to a new version of the assembler is 

the best solution to this problem. 

Ordering segments to shrink the .EXE file 
Correct segment ordering can significantly decrease the size of a .EXE program as it 
resides on disk. This size-reduction ordering is achieved by placing all uninitialized data 
fields in their own segments and then controlling the linker's ordering of the program's 
segments so that the uninitialized data field segments all reside at the end of the program. 
When the program modules are assembled, MASM places information in the object mod-
ules to tell the linker about initialized and uninitialized areas of all segments. The linker 
then uses this information to prevent the writing of uninitialized data areas that occur at 
the end of the program image as part of the resulting .EXE file. To account for the memory 
space required by these fields, the linker also sets the MINALLOC field in the .EXE file 
header to represent the data area not written to the file. MS-DOS then uses the MINALLOC 
field to reallocate this missing space when loading the program. 

130 	The Ms-DOS Encyclopedia 



Article 4: Structure of an Application 

The MASM GROUP directive 

The MASM GROUP directive can also have a strong impact on a .EXE program. However, 
the GROUP directive has no effect on the arrangement of program segments within mem-
ory. Rather, GROUP associates program segments for addressing purposes. 

The GROUP directive has the following syntax: 

grpnanze GROUP segnanze,segnotne,segname,... 

This directive causes the linker to adjust all address references to labels within any sped-
fied segname to he relative to the start of the declared group. The start of the group is de-
termined at link time. The group starts with whichever of the segments in the GROUP list 
the linker places lowest in memory. 

That the GROUP directive neither causes nor requires contiguous arrangement of the 
grouped segments creates some interesting, although not necessarily desirable, possi-
bilities. For instance, it permits the programmer to locate segments not belonging to the 
declared group between segments that do belong to the group. The only restriction im-
posed on the declared group is that the last byte of the last segment in the group must 
occur within 64 KB of the start of the group. Figure 4-7 illustrates this type of segment 
arrangement: 

I
64 

maximum 

LABEL_C III• 

A 	LABEL_B ■ 
KB 	I 	T 

Offset to 
LABELS 

Offset to 	+ 
LABEL_C —, 	LABEL_ A Il• 

T 
Offset to 

LABEL_A 
• 	 • 

SEGMENT_C 
(listed with GROUP directive) 

SEGMENT_B 
(not listed with GROUP directive) 

SEGMENT_A 
(listed with GROUP directive) 

Figure 4-7. Noncontiguous segments in the same GROUP 

Warning: One of the most confusing aspects of the GROUP directive relates to MASM's 
OFFSET operator. The GROUP directive affects only the offset addresses generated by 
such direct addressing instructions as 

NOV 	AX,FIELD_LABEL 

but it has no effect on immediate address values generated by such instructions as 

NOV 	AX,OFFSET FIELD_LABEL 

Section IL Programming in the MS-DOS Environment 	131 

ha- 



Part W Pular, rn 	 liAC nne 

Using the OFFSET operator on labels contained within grouped segments requires the 

following approach: 

MOV 	AX, OFFSET GROUP_NAME:FIELD_LA BEL  

The programmer must explicitly request the offset from the group base, because MASM 
defines the result of the OFFSET operator to be the offset of the label from the start of its 

segment, not its group. 

Structuring a small program with SEGMENT and GROUP 

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc-
tives, we'll put both directives to work structuring a skeleton program. The program, 
shown in Figures 4-8, 4-9, and 4-10, consists of three source modules (NIODULE_A, 
MODULE_B, and MODULE_C), each using the following four program segments: 

Segment 	Definition 

_TEXT 	The code or program text segment 
_DATA 	The standard data segment containing preinitialized data fields the pro- 

gram might change 
CONST 	The constant data segment containing constant data fields the program 

will not change 
_BSS 	The "block storage segment/space" segment containing uninitialized data 

fields' 

• Programmersfamiliarwith the IBM 1620/1630orCDC6000and Cyber assemblers may recognize BSS as 

"block started at symbol," which reflects an equally appropriate, although somewhat more elaborate, defini-

tion of the abbreviation. Other common translations of BSS, such as "blank static storage," misrepresent the 

segment name, because blanking of BSS segments does not occur —the memory contains undetermined 
valueswhentheprogrambeginsexecution. 

;Source Module MODULE_A 

;Pregeclare all segments to force the linker's segment ordering •************* 

_TEXT 	SEGMENT BYTE PUBLIC 'CODE' 
_TEXT ENDS 

_DATA SEGMENT WORD PUBLIC 'DATA' 
_DATA ENDS 

CONST 	SEGMENT WORD PUBLIC 'CONSTI 
CONST ENDS 

_BSS 	SEGMENT WORD PUBLIC 'BSS' 
_BSS 	ENDS 

Figure 4-8. Structuring a .EX E program: MODULE_A. 
(Mort' )  

132 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

STACK 	SEGMENT PARA STACK 'STACK' 
STACK ENDS 

DGROUP GROUP 	_DATA,CONST,_BES,STACK 

;Constant declarations ******************************************************* 

CONST 	SEGMENT WORD PUBLIC 'CONSTI 

CONST_FIELD_A 	DE 	'Constant A' 	;declare a MODULE_A constant 

CONST ENDS 

;Preinitialized data fields ************************************************** 

_DATA SEGMENT WORD PUBLIC 'DATA' 

DATA_FIELD_A 	DB 	'Data A' 	;declare a MODULE_A preinitialized field 

_DATA ENDS 

;Uninitialized data fields *************************************************** 

_BSS 	SEGMENT WORD PUBLIC 'BSS' 

BSS_FIELD_A 	DB 	5 DUP(?) 	;declare a MODULE_A uninitialized field 

_BSS 	ENDS 

; p rogram  t ext **************************************************************** 

_TEXT 	SEGMENT BYTE PUBLIC 'CODE' 

ASSUME 	CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING 

EXTRN 	PROC_B:NEAR 	 ;label is in _TEXT 
EXTRN 	PROC_C:NEAR 	 ;label is in _TEXT 

segment 
segment 

(NEAR) 
(NEAR) 

PROC_A 	PROC 	NEAR 

CALL 	PROC_B ;call into MODULE_B 

CALL 	PROC_C ;Call into MODULE_C 

MOV 	AX,4COOH ;terminate 	(MS-DOS 2.0 or later only) 
INT 	21H 

PROC_A 	ENDP 

—TEXT 	ENDS 

Figure 4-8. Continued (more) 

Section II: Programming in the MS-DOS Environment 	133 



Part B; Programming for MS-DOS 

;Stack 
 

STACK SEGMENT PARA STACK 'STACK' 

DW 	128 DUP(?) 	
;declare some space to use as stack 

STACK_BASE 	LABEL WORD 

STACK ENDS 

END 	PROC_A 	
;declare PROC_A as entry point 

Figure 4-8. Continued. 

;Source Module MODULE_B 

;Constant declarations ******************************************************* 

CONST 	SEGMENT WORD PUBLIC 'CONST' 

CONST_FIELD_B DB 	'Constant B' 	;declare a MODULE_B constant 

CONST ENDS 

;Preinitialized data fields ************************************************** 

_DATA SEGMENT WORD PUBLIC 'DATA' 

DATA_FIELD_B 	DB 	'Data B' 	;declare a MODULE_B preinitialized field 

_DATA ENDS 

;Uninitialized data fields *************************************************** 

_BSS 	SEGMENT WORD PUBLIC 'BSS' 

BSS_FIELD_B 	DB 	5 DUP(?) 	;declare a MODULE_B uninitialized  field 

_BSS 	ENDS 

;program  text ***********************************************************m., 

DGROUP GROUP _DATA,CONST,_BSS 

_TEXT 	SEGMENT BYTE PUBLIC 'CODE' 

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING 

Figure 4-9. Structuring a .EXEprogram: MODULE_B. 

134 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

PUBLIC PROC R 
PROC_B PROC 	NEAR 

RET 

PROC_B ENDP 

_TEXT ENDS 

END 

;reference in MODULE_A 

Figure 4-9. Continued. 

;Source Module MODULE_C 

;Constant declarations ******************************************************* 

CONST 	SEGMENT WORD PUBLIC 'CONST' 

CONST_FIELD_C DB 	'Constant C' 	;declare a MODULE_C constant 

CONST ENDS 

,,p feiniti ali sad data  fields  ************************************************** 

_DATA SEGMENT WORD PUBLIC 'DATA' 

DATA_FIELD_C 	DB 	'Data C' 	;declare a MODULE_C preinitialized field 

_DATA ENDS 

;Uninitialized data fields *************************************************** 

_BSS 	SEGMENT WORD PUBLIC 'BSS' 

BSS_FIELD_C 	DB 	5 DUN?) 	;declare a MODULE_C uninitialized field 

_BSS 	ENDS 

; P rogram  text ********************************************************** **m*  

DGROUP GROUP _DATA,CONST,_BSS 

_TEXT SEGMENT BYTE PUBLIC 'CODE' 

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING,SS:NOTHING 

Figure 4-10. Structuring a .EXE program: MODULE_C. 	 (more) 

Section II: Programming in the MS-DOS Environment 	135 



Part B: Programming for MS-DOS 

PUBLIC PROC_C 	
;referenced in MODULE_n 

PROC_C PROC 	NEAR 

RET 

PROC_C ENDP 

_TEXT ENDS 

END 

Figure 4-10. Continued. 

This example creates a small memory model program image, so the linked program can 
have only a single code segment and a single data segment — the simplest standard form 
of a .EXE program. See Using Microsoft's Contemporary Memory Models below. 

In addition to declaring the four segments already discussed, MODULE_ A declares a 
STACK segment in which to define a block of memory for use as the program's stack and 
also defines the linking order of the five segments. Defining the linking order leaves the 
programmer free to declare the segments in any order when defining the segment con-
tents —a necessity because the assembler has difficulty assembling programs that use 

forward references. 

With Microsoft's MASM and LINK on the same disk with the .ASM files, the following com-
mands can be made into a batch file: 

MASM STRUCA; 
MASM STRUCB; 
MASM STRUCC; 
LINK STRUCA+STRUCB+STRUCC/M; 

These commands will assemble and link all the .ASM files listed, producing the memory 
map report file STRUCA.MAP shown in Figure 4-11. 

Start Stop Length Name Class 

000005 0000CH 0000D5 _TEXT CODE 

0000EH 0001FH 00012H _DATA DATA 

000205 0003DH 0001EH CONST CONST 

0003EH 0004EH 00011H _BSS BSS 

000505 0014FH 00100H STACK STACK 

Origin Group 

	

0000:0 	DGROUP 

Address 	Publics by Name 

	

0000:0008 	PROC_B 

	

0000 : 000C 	PROC_C 

Figure 4-11. Structuring a .EXE program: memory map report. 	 (more) 

136 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

Address 	 Publics by Value 

	

0000:000B 	PROC_B 

	

0000:000C 	PROC_C 
Program entry point at 0000:0000 

Figure 4-71. Continued. 

The above memory map report represents the memory diagram shown in Figure 4-12. 

Absolute 
address 

00150H Is 

00050H ■ 
0004FH II 

0004AH II. 

0004914 	It• 

00044H 	It• 

0004311 	lio. 

0003E11 	10. 

0003411 ■ 
0002A11 	Ito,  

0002014 	lio- 

0001AH •. 

0001411 	Ir 

0000EH I. 

0000DH Or 

0000CH ■ 
DGROUP 0000BH 11. 

addressing ii. 
base 

00000H lo. 

- 	Group 	— 

STACK 
Class 

STACK (A) 

PARA align gap 

-DGROUP — 	  

	  — 	BSS 	— 
	  — 	Class 	— 

BSS (A)  

BSS (C) 

WORD align gap 

BSS (B) 
 

WORD align gap 

	  — CONST — 
	  _ 	Class 	_ 

C ONST (C) 
 

CONST (B) 

CONST (A) 

	  — DATA — 
	  _ 	Class 	_ 

DATA (C) 
 

DATA (B)  
DATA (A) 

WORD align gap 

— — — — 	Class 

TEXT (C) 

— — — TEXT (B)  
TEXT (A) 

Size in bytes 

256 

.5 

.0 
10 	310  

10 	+  
6  

6 	IS 

64  
1  
1  

1 	13 

11 	4,  

• 

321 

Figure 4-12. Structure ofIhe sample .EXE program. 

Using Microsoft's contemporary memory models 

Now that we've analyzed the various aspects of designing assembly-language .EXE pro-
grams, we can look at how Microsoft's high-level-language compilers create .EXE pro-
grams from high-level-language source files. Even assembly-language programmers will 
find this discussion of interest and should seriously consider using the five standard 
memory models outlined here. 

This discussion is based on the Microsoft C Compiler version 4.0, which, along with the 
Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary code 
generator currently available. These newer compilers generate code based on three to five 

Section 11: Programming in the MS-DOS Environment 	137 	- 



Part B: Programming for MS-DOS 

of the following standard programmer-selectable program structures, referred to a s  • mem, 

ory models. The discussion of each of these memory models will center on the m
odel 's 

use with the Microsoft C Compiler and will close with comments regarding any differences 

for the Microsoft FORTRAN Compiler. 

Small (C compiler switch /AS) This model, the default, includes only a single code seg-

ment and a single data segment. All code must fit within 64 KB, and all data must fit Withi n  

an additional 64 KB. Most C program designs fall into this category. Data can exceed the 
64 KB limit only if the far and huge attributes are used, forcing the compiler to use far 
addressing, and the linker to place far and huge data items into separate segments. The 
data-size-threshold switch described for the compact model is ignored by the Microsoft C 
Compiler when used with a small model. The C compiler uses the default segment name 
_TEXT for all code and the default segment name _DATA for all non-far/huge data. 
Microsoft FORTRAN programs can generate a semblance of this model only by using the 
/NM (name module) and /AM (medium model) compiler switches in combination with the 

near attribute on all subprogram declarations. 

Medium (C and FORTRAN compiler switch /AM) This model includes only a single data 

segment but breaks the code into multiple code segments. All data must fit within 64 KB, 
but the 64 KB restriction on code size applies only on a module-by-module basis. Data can 
exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to 
use far addressing, and the linker to place far and huge data items into separate segments. 
The data-size-threshold switch described for the compact model is ignored by the 
Microsoft C Compiler when used with a medium model. The compiler uses the default seg-
ment name _DATA for all non-far/huge data and the template module TEXT to create 

names for all code segments. The module element of module TEXT indicates where the 
compiler is to substitute the name of the source module. For example, if the source module 
HELPFUNC.0 is compiled using the medium model, the compiler creates the code seg-
ment HELPFUNC_TEXT. The Microsoft FORTRAN Compiler version 4.0 directly supports 
the medium model. 

Compact (C compiler switch /AC) This model includes only a single code segment but 
breaks the data into multiple data segments. All code must fit within 64 KB, but the data is 
allowed to consume all the remaining available memory. The Microsoft C Compiler's op-
tional data-size-threshold switch (/Gt) controls the placement of the larger data items into 
additional data segments, leaving the smaller items in the default segment for faster access. 
Individual data items within the program cannot exceed 64 KB under the compact model 
without being explicitly declared huge. The compiler uses the default segment name 
_TEXT for all code segments and the template module# DATA to create names for all data 
segments. The module element indicates where the compiler is to substitute the source . 

module's name; the # element represents a digit that the compiler changes for each addi -
tional data segment required to hold the module's data. The compiler starts with the digit 5  

and counts up. For example, if the name of the source module is HELPFUNC.C, the com -

piler names the first data segment HELPFUNC5_DATA. FORTRAN programs can generate 

a semblance of this model only by using the /NM (name module) and /AL (large model )  
compiler switches in combination with the near attribute on all subprogram declarations. 

138 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application 

Large (C and FOR 	compiler switch /AL) This model creates multiple code and data 
segments. The compiler treats data in the same manner as it does for the compact model 
and treats code in the same manner as it does for the medium model. The Microsoft 
FORTRAN Compiler version 1.0 directly supports the large model. 

Huge Wand FORTRAN co:upiler switch /ALI) Allocation of segments under the huge 
model follows the same rules as for the large model. The difference is that individual data 
items can exceed 64 KB. Under the huge model, the compiler generates the necessary 
code to index arrays or adjust pointers across segment boundaries, effectively transforming 
the microprocessor's segment-addressed memory into linear-addressed memory. This 
makes the huge model especially useful for porting a program originally written for a pro-
cessor that used linear addressing. The speed penalties the program pays in exchange for 
this addressing freedom require serious consideration. If the program actually contains 
any data structures exceeding 64 KB, it probably contains only a few. In that case, it is best 
to avoid using the huge model by explicitly declaring those few data items as huge using 
the huge keyword within the source module. This prevents penalizing all the non-huge 
items with extra addressing math. The Microsoft FORTRAN Compiler version 4.0 directly 
supports the huge model. 

Figure 4-13 shows an example of the segment arrangement created by a large/huge model 
program. The example assumes two source modules: MSCA.0 and MSCB.C. Each source 
module specifies enough data to cause the compiler to create two extra data segments for 
that module. The diagram does not show all the various segments that occur as a result of 
linking with the run-time library or as a result of compiling with the intention of using the 
Code View debugger. 

Groups 	Classes 	Segments 

STACK STACK 

BSS 
c_common 

DGROUP _BSS 

CONST CONST 

DATA _DATA 

FAR_BSS FAR_BSS 

MSCB6_DATA 

FAR_DATA MSCBS_DATA 

MSCA6_DATA 

MSCAS_DATA 

TEXT 

CODE MSCB_TEXT 

MSCA_TEXT 

• SMCLH: Program stack 

• SM: All uninitialized global items, CLH: Empty 

• SMCLH: All uninitialized non-far/huge items 

• SMCLH: Constants (floating point constraints, segment addresses, etc.) 

• SMCLH: All items that don't end up anywhere else 

SM: Nonexistent, CLH: All uninitialized global items 

• From MSCB only: SM: Far/huge items, CLH: Items larger than threshold 

• From MSCB only: SM: Far/huge items, CLH: Items larger than threshold 
• From MSCA only: SM: Far/huge items, CLH: Items larger than threshold 

From MSCA only: SM: Far/huge items, CLH: Items larger than threshold 

14 SC: All code, MLH: Run-time library code only 

• SC: Nonexistent, MLH: MSCB.0 Code 

• SC: Nonexistent, MLH: MSCA.0 Code 

S = Small model 	L = Large model 
M = Medium model 	H = Huge model 
C = Compact model 

Figure 4-13. General structure oja Microsoft C program. 

Section II: Programming in the MS-DOS Environment 	139 



Part 13: Programming for MS-DOS 

memor 
Note that if the program declares an extremely large number of small data items, it c

an  

exceed the 64 KB size limit on the default data segment (_DATA) regardless of the 
model specified. This occurs because the data items all fall below the data-size-threshold •y 
limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment. 
Lowering the data size threshold or explicitly using the far attribute within the source 

modules eliminates this problem. 

Modifying the .EXE file header 
With most of its  language compilers, Microsoft supplies a utility program called EXEmoD .  

See PROGRAMMING UTILITIES: EXEMOD. 
This utility allows the programmer to display 

and modify certain fields contained within the .EXE file header. Following are the heade r  

fields EXEMOD can modify (based on EXEMOD version 4.0): 

MAXALLOC This field can be modified by using EXEMOD's /MAX switch. Because 
EXEMOD operates on .EXE files that have already been linked, the /MAX switch can be 
used to modify the MAXALLOC field in existing .EXE programs that contain the default 
MAXALLOC value of FFFFH, provided the programs do not rely on MS-DOS's allocating 
all free memory to them. EXEMOD's /MAX switch functions in an identical manner to 
LINK's /CPARMAXALLOC switch. 

MINALLOC This field can be modified by using EXEMOD's /MIN switch. Unlike the case 
with the MAXALLOC field, most programs do not have an arbitrary value for MINALLOC. 
MINALLOC normally represents uninitialized memory and stack space the linker has com-
pressed out of the .EXE file, so a programmer should never reduce the MINALLOC value 
within a .EXE program written by someone else. If a program requires some minimum 
amount of extra dynamic memory in addition to any static fields, MINALLOC can be in-
creased to ensure that the program will have this extra memory before receiving contronf 
this is done, the program will not have to verify that MS-DOS allocated enough memory to 
meet program needs. Of course, the same result can be achieved without EXEMOD by 
declaring this minimum extra memory as an uninitialized field at the end of the program. 

Initial SP Value This field can be modified by using the /STACK switch to increase or 
decrease the size of a program's stack. However, modifying the initial SP value for pro-
grams developed using Microsoft language compiler versions earlier than the following 
may cause the programs to fail: C version 3.0, Pascal version 3.3, and FORTRAN version 
3.3. Other language compilers may have the same restriction. The /STACK switch can also 
be used with programs developed using MASM, provided the stack space is linked at the 
end of the program, but it would probably be wise to change the size of the STACK seg-
ment declaration within the program instead. The linker also provides a /STACK switch 
that performs the same purpose. 

Note: With the /H switch set, EXEMOD displays the current values of the fields within 
the .EXE header. This switch should not be used with the other switches. EXEMOD also 
displays field values if no switches are used. 

140 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

Warning: EXEMOD also functions correctly when used with packed .EXE files created 
using EXEPACK or the ./EXEPAc LK linker switch. However, it is important to use the 
EXEMOD version shipped with the linker or EXEPACK utility. Possible future changes in 
the packing meth od may result in incompatibilities between EXEMOD and nonassociated 
linker/EXEPACK versions. 

Patching the .EXE program lasing DEBUG 

Every experienced programmer knows that programs always seem to have at least one 
unspotted error. If a program has been distributed to other users, the programmer will 
probably need to provide those users with corrections when such bugs come to light. One 
inexpensive updating approach used by many large companies consists of mailing out 
single-page instructions explaining how the user can patch the program to correct the 
problem. 

Program patching usually involves loading the program file into the DEBUG utility sup-
plied with MS-DOS, storing new bytes into the program image, and then saving the pro-
gram file back to disk. Unfortunately, DEBUG cannot load a .EXE program into memory 
and then save it back to disk in .EXE format. The programmer must trick DEBUG into 
patching .EXE program files, using the procedure outlined below. See PROGRAMMING 
UTILITIES: DEBUG. 

Note: Users should be reminded to make backup copies of their program before attempt-
ing the patching procedure. 

1. Rename the .EXE file using a filename extension that does not have special meaning 
for DEBUG. (Avoid .EXE, .COM, and .HEX.) For instance, MYPROG.BIN serves well as 
a temporary new name for MYPROG.EXE because DEBUG does not recognize a file 
with a .BIN extension as anything special. DEBUG will load the entire image of 
MYPROG.BIN, including the .EXE header and relocation table, into memory starting 
at offset 100H within a .COM-style program segment (as discussed previously). 

2. Locate the area within the load module section of the .EXE file image that requires 
patching. The previous discussion of the .EXE file image, together with compiler/ 
assembler listings and linker memory map reports, provides the information neces-
sary to locate the error within the .EXE file image. DEBUG loads the file image start-
ing at offset 100H within a .COM-style program segment, so the programmer must 
compensate for this offset when calculating addresses within the file image. Also, the 
compiler listings and linker memory map reports provide addresses relative to the 
start of the program image within the .EXE file, not relative to the start of the file 
itself. Therefore, the programmer must first check the information contained in the 
.EXE file header to determine where the load module (the program's image) starts 

within the file. 
3. Use DEBUG's E (Enter Data) or A (Assemble Machine Instructions) command to 

insert the corrections. (Normally, patch instructions to users would simply give an 
address at which the user should apply the patch. The user need not know how to 

determine the address.) 
4. After the patch has been applied, simply issue the DEBUG W (Write File or Sectors) 

command to write the corrected image back to disk under the same filename, pro-
vided the patch has not increased the size of the program. If program size has 

Section 11. Programming in the MS-DOS Environment 	141 



Part B: Programming for MS-DOS 

increased, first change the appropriate size fields in the .EXE header at the start of the 
file and use the DEBUG R (Display or Modify Registers) command to modify the 13X 
and OC registers so that they contain the file image's new size. Then use the W com-
mand to write the image back to disk under the same name. 
Use the DEBUG Q (Quit) command to return to MS-DOS command level, and then 
rename the file to the original .EXE filename extension. 

.EXE summary 
To summarize, the .EXE program and file structures provide considerable flexibility in the 
design of programs, providing the programmer with the necessary freedom to produce 
large-scale applications. Programs written using Microsoft's high-level-language compilers 
have access to five standardized program structure models (small, medium, compact, 
large, and huge). These standardized models are excellent examples of ways to structure 
assembly-language programs. 

The .COM Program 
The majority of differences between .COM and .EXE programs exist because .COM 
program files are not prefaced by header information. Therefore, .COM programs do not 
benefit from the features the .EXE header provides. 

The absence of a header leaves MS-DOS with no way of knowing how much memory the 
.COM program requires in addition to the size of the program's image. Therefore, MS-DOS 
must always allocate the largest free block of memory to the .COM program, regardless of 
the program's true memory requirements. As was discussed for .EXE programs, this allo- 
cation of the largest block of free memory usually results in MS-DOS's allocating all 
remaining free memory— an action that can cause problems for multitasking supervisor 
programs. 

The .EXE program header also includes the direct segment address relocation pointer 
table. Because they lack this table, .COM programs cannot make address references to the 
labels specified in SEGMENT directives, with the exception of SEGMENT AT address 
directives. If a .COM program did make these references, MS-DOS would have no way of 
adjusting the addresses to correspond to the actual segment address into which MS-DOS 
loaded the program. See Creating the .COM Program below. 

The .COM program structure exists primarily to support the vast number of CP/M pro-
grams ported to MS-DOS. Currently, .COM programs are most often used to avoid adding 
the 512 bytes or more of .EXE header information onto small, simple programs that often 
do not exceed 512 bytes by themselves. 

The .COM program structure has another advantage: Its memory organization places the 
PSP within the same address segment as the rest of the program. Thus, it is easier to access 
fields within the PSP in .COM programs. 

142 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

Giving control to the .COM program 

After allocating the largest block of free memory to the .COM program, MS-DOS builds 
a PSP in the lowest 100H bytes of the block. No difference exists between the PSP MS-DOS 
builds for .COM programs and the PSP it builds for .EXE programs. Also with .EXE pro-
grams, MS-DOS determines the initial values for the AL and AH registers at this time and 
then loads the entire .COM-file image into memory immediately following the PSP. 
Because .COM  files have no file-size header fields, MS-DOS relies on the size recorded in 
the disk directory to determine the size of the program image. It loads the program exactly 
as it appears in the file, without checking the file's contents. 

MS-DOS then sets the DS, ES, and SS segment registers to point to the start of the PSP. If 
able to allocate at least 64 KB to the program, MS-DOS sets the SP register to offset FFFFH 
+ 1 (0000H) to establish an initial stack; if less than 64 KB are available for allocation to the 
program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In 11 either case, MS-DOS then pushes a single word of 0000H onto the program's stack for 
use in terminating the program. 

Finally, MS-DOS transfers control to the program by setting the CS register to the PSP's 
segment address and the IP register to 0100H. This means that the program's entry point 
must exist at the very start of the program's image, as shown in later examples. 

Figure 4-14 shows the overall structure of a .COM program as it receives control from 
MS-DOS. 

.COM program memory image 

	

SP=FFFEH* 	I con owl I 	 A 

Remaining free memory 
within first 64 KB allocated 

to .COM program 
(provided a full 64 KB was available) 

64 KB* 

.COM program image from file 

	

.COM program image 	 • IP=010011 
Program segment prefix 

	 • CS,DS,ES,SS — 

*The SP and 64 KB values are dependent upon 
MS-DOS having 64 KB or more of memory 
available to allocate to the .COM program 
at load time. 

Figure 4-14. The .COM  program: memory map diagram with registerpointers. 

Section IL Programming in the MS-DOS Environment 	143 



Part B: Programming for MS-DOS 

Terminating the .COM program 

A .COM program can use all the termination methods described for .EXE programs but 
should still use the MS-DOS Interrupt 21H Terminate Process with Return Code function 
(4CH) as the preferred method. If the .COM program must remain compatible with ver-
sions of MS-DOS earlier than 2.0, it can easily use any of the older termination methods, 
including those described as difficult to use from .EXE programs, because .COM programs 
execute with the CS register pointing to the PSP as required by these methods. 

Creating the .COM program 

A .COM program is created in the same manner as a .EXE program and then converted 
using the MS-DOS EXE2BIN utility. See PROGRAMMING UTILITIES: EXE2BIN. 

Certain restrictions do apply to .COM programs, however. First, .COM programs cannot 
exceed 64 KB minus 100H bytes for the PSP minus 2 bytes for the zero word initially 
pushed on the stack. 

Next, only a single segment—or at least a single addressing group — should exist within 
the program. The following two examples show ways to structure a .COM program to sat-
isfy both this restriction and MASM's need to have data fields precede program code in the 
source file. 

COMPROGLASM (Figure 4-15) declares only a single segment (COMSEG), so no special 
considerations apply when using the MASM OFFSET operator. See The MASM GROUP 
Directive above. COMPROG2.ASM (Figure 4-16) declares separate code (CSEG) and data 
(DSEG) segments, which the GROUP directive ties into a common addressing block. 
Thus, the programmer can declare data fields at the start of the source file and have the 
linker place the data fields segment (DSEG) after the code segment (CSEG) when it links 
the program, as discussed for the .EXE program structure. This second example simulates 
the program structuring provided under CP/M by Microsoft's old Macro-80 (M80) macro 
assembler and Link-80 (L80) linker. The design also expands easily to accommodate 
COMMON or other additional segments. 

COMSEG SEGMENT BYTE PUBLIC 'CODE' 
ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS:COMSEG 

ORG 	0100H 

BEGIN: 
JMP 	START 	 ;skip over data fields 

;Place your data fields here. 

START: 

;Place your program text here. 

MOV 	AX,4COOH 	;terminate (MS-DOS 2.0 or later only) 

INT 	21H 

COMSEG ENDS 
END 	BEGIN 

Figure 4-15. .COM program with data at start. 

144 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

CSEG 	SEGMENT BYTE PUBLIC 'CODE' 

CSEG 	ENDS 
DSEG 	SEGMENT BYTE PUBLIC 'DATA' 

DSEG 	ENDS 

COMGRP GROUP CSEG,DSEG 

DSEG 	SEGMENT 

;Place your data fields here. 
DSEG 	ENDS 

CSEG 	SEGMENT 

;establish segment order 

;establish joint address base 

ASSUME CS:COMGRP,DS:COMGRP,ES:COMGRP,SS:COMGRP 

ORG 	0100H 

BEGIN: 

;Place your program text here. Remember to use 11 ;OFFSET COMGRP:LABEL whenever you use OFFSET. 

MOV 	AX,4COOP 	 ;terminate (MS-DOS 2.0 or later only) 

INT 	21H 	 1  
: CSEG 	ENDS 

END 	BEGIN 

Figure 4-16 .COM program with data at end. 

These examples demonstrate other significant requirements for producing a functioning 
.COM program. For instance, the ORG 0100H statement in both examples tells MASM to 
start assembling the code at offset 100H within the encompassing segment. This corre-
sponds to MS-DOS's transferring control to the program at IP = 0100H. In addition, the 
entry-point label (BEGIN) immediately follows the ORG statement and appears again as a 
parameter to the END statement. Together, these factors satisfy the requirement that .COM 
programs declare their entry point at offset 100H. If any factor is missing, the MS-DOS 
EXE2BIN utility will not properly convert the .EXE file produced by the linker into a .COM 
file. Specifically, if a .COM program declares an entry point (as a parameter to the END 
statement) that is at neither offset 0100H nor offset 0000H, EXE2BIN rejects the .EXE file 
when the programmer attempts to convert it. If the program fails to declare an entry point 
or declares an entry point at offset 0000H, EXE2BIN assumes that the .EXE file is to be 
converted to a binary image rather than to a .COM image. When EXE2BIN converts a .EXE 
file to a non-.COM  binary file, it does not strip the extra 100H bytes the linker places in 
front of the code as a result of the ORG 0100H instruction. Thus, the program actually 
begins at offset 200H when MS-DOS loads it into memory, but all the program's address 
references will have been assembled and linked based on the 100H offset. As a result, the 
program —and probably the rest of the system as well —is likely to crash. 

A .COM program also must not contain direct segment address references to any segments 
that make up the program. Thus, the .COM program cannot reference any segment labels 
or reference any labels as long (FAR) pointers. (This rule does not prevent the program 
from referencing segment labels declared using the SEGMENT AT address directive.) 
Following are various examples of direct segment address references that are not per-
mitted as part of .COM programs: 

	

Section 11 Programming in the MS-DOS Environment 	145 



Part B: Programming for MS-DOS 

PROC_A PROC 	FAR 
PROC_A ENDR 

CALL 	PROC_A 	 ;intersegment call 
JMP 	PROC_A 	 ;intersegment jump 

EXTRN PROC_A:FAR 
CALL 	PROC_A 	 ;intersegment call 
JMP 	PROC_A 	 ;intersegment jump 

MOV 	AX,SEG SEG_A 	;segment address 
DD 	LABEL_A 	 ;segment:offset pointer 

Finally, .COM programs must not declare any segments with the STACK combine type. If 
a program declares a segment with the STACK combine type, the linker will insert initial 
SS and SP values into the .EXE file header, causing EXE2BIN to reject the .EXE file. A .COM  
program does not have explicitly declared stacks, althqugh it can reserve space in a non-
STACK combine type segment to which it can initialize the SP register after it receives 
control. The absence of a stack segment will cause the linker to issue a harmless warning 
message. 

When the program is assembled and linked into a .EXE file, it must be converted into a 
binary file with a .COM extension by using the EXE2BIN utility as shown in the following 
example for the file YOURPROG.EXE: 

C>EXE2BIN YOURPROG YOURPROG.COM  <Enter> 

It is not necessary to delete or rename a .EXE file with the same filename as the .COM 
file before trying to execute the .COM file as long as both remain in the same directory, 
because MS-DOS's order of execution is .COM files first, then .EXE files, and finally .BAT 
files. However, the safest practice is to delete a .EXE file immediately after converting it to 
a .COM file in case the .COM file is later renamed or moved to a different directory. If a 
.EXE file designed for conversion to a .COM file is executed by accident, it is likely to crash 
the system. 

Patching the .COM program using DEBUG 

As discussed for .EXE files, a programmer who distributes software to users will probably 
want to send instructions on how to patch in error corrections. This approach to software 
updates lends itself even better to .COM files than it does to .EXE files. 

For example, because .COM files contain only the code image, they need not be renamed 
in order to read and write them using DEBUG. The user need only be instructed on how to 
load the .COM file into DEBUG, how to patch the program, and how to write the patched 
image back to disk. Calculating the addresses and patch values is even easier, because no 
header exists in the .COM file image to cause complications. With the preceding excep-
tions, the details for patching .COM programs remain the same as previously outlined for 
.EXE programs. 

or 

or 

146 	The MS-DOS Encyclopedia 



Article 4: Structure of an Application Program 

.COM summary 

To summarize, the .COM program and file structures are a simpler but more restricted 
approach to writing programs than the .EXE structure because the programmer has only a 
single memory model from which to choose (the .COM program segment model). Also, 
.COM program files do not contain the 512-byte (or more) header inherent to .EXE files, so 
the .COM program structure is well suited to small programs for which adding 512 bytes 
of header would prob'ably at least double the file's size. 

Summary of Differences 

The following table summarizes the differences between .COM and .EXE programs. 

.COM program 	 .EXE program 

Maximum size 

Entry point 
CS at entry 

IP at entry 

DS at entry 
ES at entry 
SS at entry 
SP at entry 

Stack at entry 

Stack size 

Subroutine calls 
Exit method 

Size of file 

65536 bytes minus 256 bytes 
for PSP and 2 bytes for stack 

PSP:0100H 
PSP 

0100H 

PSP 
PSP 
PSP 
FFFEH or top word in available 

memory, whichever is lower 
Zero word 

65536 bytes minus 256 bytes 
for PSP and size of executable 
code and data 

NEAR 
Interrupt 21H Function 4CH 

preferred; NEAR RET if 
MS-DOS versions 1.x 

Exact size of program 

No limit 

Defined by END statement 
Segment containing program's 

entry point 
Offset of entry point within its 

segment 
PSP 
PSP 
Segment with STACK attribute 
End of segment defined with 

STACK attribute 
Initialized or uninitialized, 

depending on source 
Defined in segment with 

STACK attribute 

NEAR or FAR 
Interrupt 21H Function 4CH 

preferred; indirect jump 
to PSP:0000H if MS-DOS 
versions 1.x 

Size of program plus header (at 
least 512 extra bytes) 

Section IL Programming in the MS-DOS Environment 	147 



Part B: Programming for MS-DOS 

Which format the programmer uses for an application usually depends on the program's 
intended size, but the decision can also be influenced by a program's need to address mul- 
tiple memory segments. Normally, small utility programs (such as CHKDSK and FOR-
MAT) are designed as .COM programs; large programs (such as the Microsoft C Compiler) 
are designed as .EXE programs. The ultimate decision is, of course, the programmer's. 

Keith Burgoyne 

148 	The MS-DOS Encyclopedia 


	Article 4 - Structure of an Application Program
	The .EXE Program
	Structure of the .EXE files
	The .COM program
	Summary of Differences




