The Component Object Model Specification

Version 0.9
October 24, 1995

This document contains the specification to the Component Object Model (COM), areetuatgitand supporting
infrastructure for building, using, and evolving component software in a robust manner. This specification contains
the standard APIs supported by the COM Library, the standard suites of interfaces supported or used by software
written in a COM environment, along with the network protocols used by COM in support of distributed computing.
This specification is still in draft form, and thus subject to change.

Note: This document is an early release of the final specifioatibis
meant to specify and accompany software that is still in dgveént
Some of the information in this documentation may be inaccurate
may not be an accurate representation of thetfonality of the final
specification or software. Microsofissumes no responsibility for any
damages that might occur either directly or indirectly from the:
inaccuracies. Microsoft may have trademarks, copyrights, patents
pending patent applications, or other intellectual property righ
covering subject mé&r in this document. The furnishing of this
document does not give you a license to these trademarks, copyfric
patents, or other intellectual property rights.

Copyright © 199295 Microsoft Corporation. All Rights Reserved

The Component Object Model Specification The Component Object Model

The Component Object Model Specification
Draft Version 0.9, October 24, 1995
Microsoft Corporation and Digital Equipment Corporation

Copyright © 199295 Microsoft Corporation.

Microsoft does not make any representation or warranty regarding the Specification or any product or item devel-
oped based on the Specification. Microsdificlaims all express and implied warranties, including but not limited

to the implied warranties of merchantability, fithess for a particular purpose and freedom from infringement. With-
out limiting the generality of the foregoing, Microsoft does not enaky warranty of any kind that any item devel-
oped based on the Specification, or any portion of it, will not infringe any copyright, patent, trade secret or other
intellectual property right of any person or entity in any country. It is your respomgituiliseek licenses for such
intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in
connection with the use of the Specification, including liability for lost profit, business interruption,ycstler
damages whatsoever. Some states do not allow the exclusion or limitation of liability for consequential or incidental
damages; the above limitation may not apply to you.

Copyright ©199295 Microsoft Corporation Page:ii DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

Table of Contents

How to Read This Document
Part I: Component Object Model Introduction

1. Introduction

1.1 Challengefacing The Software INAUSTIY........couiiiiiiiiiiieer e 9
1.2 The Solution: ComMpPOoNent SOMIWAIE..........cccviiiirii e e
1.3 The Component Soft.war.e..Sao.l.ut.i.an...
1.4 ODbjects and INtErfAaCES.oiui ettt eme et emmmee e ae e
1.5 Clients, Servers, and Object IMPIeMENLOLS.......ccooiiiiiiiicce e 23
1.6 The COM Library.
1.7 COM aS @ FOUNGALIAN.cocuiiiiiieiiti e et 27

Part Il: Component Object Model Programming Interface 31

2. Component Object Model Technical Overview 33

2.1 Objects and Interfaces..........cccueeuee
2.2 COM Application Responsibilities.....
2.3 The COM Client/Server Model..........

E6s COM

2.4 Object Reusability.......c.ccccervreeenee
2.5 Connectable Objects and Events............ .
A R Y= 0 S (0] = Vo =SSOSR OPRORY 4 8
2.7 Persistent, Intelligent Names: MONIKELS ... e 53
2.8 UNiform DaB TranSTeI........ooiiiieiie et emmre st 55
3. Objects And Interfaces 59
L0 I 1) (=] 7= o= USSP PSSP 59
3.2 Globally Unique Identifie......54
3.3 The IUnknown Interface................. 65
3.4 Error Codes and Error Handling 69
3.5 Enumerators @hEnumerator INterfaces..........cceiveieiiiiiemseesee e veeee e 3
3.6 Designing and Implementing ODJECES.........oooiiiiiii e ..
4. COM Applications
4.1 Verifying the COM Library VErsion.........ccceeiiiiieniicmciie et sememe e
4.2 Library Initialization / Uninitialization
4.3 Memory Management.............cccceeerunen
4.4 Memory AlloCation EXAMPIE.......c.coiiiiiiiieiiisimeeeestieesiee st immme s e e sbee e
5. COM Clients
5.1 Identifying the OBJECt CIAaSS.......cccviieiiiiirisemre s e
5.2 Creating the ODJECL.......oo. o e emme e e
5.3 Obtaining the Class Factory Object for a CLSID....

5.4 Initializing the Object
5.5 Managing the Object
5.6 Releasing the ODbjJecCt........ccooviiieiiiiee e
5.7 Server ManageMEINT...........coiuiiiuiaieaeet ettt ettt eessmee st be e be e et esbeeste s smamseeeseeeneeane
6. COM Servers
6.1 Identifying and Registering an Object CIass..........cccvveviiicmree e
6.2 Implementinghe Class Factory...........ccccceeueenee.
6.3 EXPOSING the Class FaCtOny......cciiiiie ettt smmmre e e e smee s 103
6.4 Providing for Server Unloading..........cccccuveiieiiieeneieeesie et siesesvemmee e siee e e snaee e 108
6.5 Object Handlers............cccecevvveneene i
6.6 Object Reusability.....
6.7 Emulating Other Servers

7.Interface Remoting

7.1 How Interface Remoting WOTIKS........cuiiiiiiiiiisceee et 118
7.2 Architecture of Custom Object Marshaling..........ccoveciiiiiemseeniescsee e 119
7.3 Architecture of Standard Interface / Object Marshaling..........cccccoceveecmenccncecnenen 121
7.4 Architecture of Handler Marshaling

7.5 Standards for Mahaled Data PaCKetS...........ccooiririiiemesineeeeesre s rmmee e 124
7.6 Creating an Initial Connection Between PrOCESSES.........coiveiuieiiecmeeseeiee e nee e 124
7.7 Marshaling Interface and Function Descriptians.............. ...124

7.8 Marshaling Related API Functions
7.9 IMarshal INtErfaCe.couiiie ettt emmme e 138

DRAFT: October 24,1995 Page:3 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

7.10 1StdMarshallnfo INTEIFACE.......cueii e ceeme e rmmmre et s 141
7.11 Support for Remote DEDUGQING.....coiiviiiiieiiieiieeeeeee et seeesiee e mmmsae e e e 141
8. Security 151
8.1 ACHIVATION SECUIIEY.....eiiuieiieiriieitiesieermre ettt immme et e srmmma e ere e 151
8.2 CAll SEOUIMEY.c. ittt ce ettt emma e ae e et e bt e te e bt et emmneesseasneesaeesneenreens 153
Part Ill: Component Object Model Protocols and Services 162
9. ConnectableObjects 164
9.1 ThelConnectioNPOININIEMACE..........cccie e ceee et enee e 164
9.2 ThelConnectionPointContaindnterface [i.
9.3 ThelEnumConnectionPOiNtBItEfACE.cccveiieeiee e smmnre e 168
9.4 Thel EnumMCONNECHONBILEITACE.eiiiiii it ceeee et L.
10. Persistent Storage 173
11. Persistent Intelligent Names: Monikers
B @ A= RS UPRPRN
11.2 IMoniker interface and Core Monikers
0 S PTUSRE

12. Uniform Data Transfer
Part IV: Type Information
13. Interface Definition Language

13.1 Object RPC IDL EXIENSIONS. ...c.vtiiiiiieiieiiiiemmme et ettt ememe s snee e sem
13.2 Mapping from ORPC IDL t0 DCE RPC IDL......cccoceiiiiniiciiimeieeeeeese s 212
14. Type Libraries 214
Part V: The COM Library 216
15. Component Object Model Network Potocol 218
15,0 OVOIVIEW. ..ttt et ieem ettt she e bttt emms e e s et et e he e sae e e ae e s s emmmn e et e e bt e beenteenneennen 218
15.2 Data types and structutes............ ...222
15.3 IReMUNKNOWN INEITACE.eiiiiiiiiie e ..228
15.4 The Object Exporter.........c.cccueenee. e ———— i
15.4u e ettt te e ae e e e enes ..231
15.5 Service CONLIOl MABNAGEL.......cccueiieeeieeeimeeresiteesiteeesteeesseeesmmmeeeessaeesseeesseeessssmmmsseeene i
15.6 Wrapping DCE RPC calls to interoperate with ORPC..... e 242
15.7 Implementing ORPC iN RPC......oiiiiiiiiiiieieme e mmre et 243
Appendix B: Bibliography 245
Appendix C: Specification Revision History 247
Appendix D: Index 249
Copyright ©199295 Microsoft Corporation Page:4 DRAFT: October 24,1995

All Rights Reserved

The Component Object Model The Component Object Model Specification

How to Read This Document

This specification is written to help a variety of readers understand #igndand implementation of the Component
Object Model (referred to herein simply as COM) as much as they would like. The presentation of COM gradually
progresses from higlevel overviews to COM benefits and eventually into the underlying mechanisms and pr
gramming interfaces to COM. This section is intended to help the reader determine what parts of this document to
read.

This specification is divided into four parts, each of which contains one or more chapters. Part | isveewoaed
introduction. Chapter 1, the only chapter in Part I, explains at a high level the motivations of COM and the problems
it addresses. It describes what COM is and its features, and describes the major benefits and advantages of COM. All
readers shdd be interested in this chapter.

Part Il contains the programming interface to COM, the suite of interfaces and APIs by which Component Object
Model software is implemented and used. Chapters 2 through 8 are in Part II.

Chapter 2 goes into more detail ait@OM features and mechanisms without getting into the details of function call
specifications and code. The chapter is intended for technical readers who want to know more than simply what
COM is and what problems it solves, and therefore delves despehow applications use COM and the benefits of
such use.

Chapters 36 contain programminggevel information for readers who are interested in actually making use of COM

in an application. These chapters explain the fundamentals of objects in COM acrédtien of object clients as

well as object servers. Chapter 3 details the basic object structures and mechanisms and provides the functional spec-
ifications of the core of COM. Chapter 4 covers the COM programming interfaces that all applications nsakarig u

COM must follow. Chapter 5 then deals specifically with COM clients; Chapter 6 specifically with COM servers.

Chapter 7 contains more detailed information about how COM clients and servers communicate with objects. This
information is generally need only by sophisticated programmers. Nevertheless, programmers may find this chap-
ter enlightening and can gain a clear understanding of all the underlying mechanisms that make COM truly powerful.

Chapter 8 contains information on how communications betv@@M clients and severs can be made secure.

Part 1ll (Chapters 942) provides the functional specifications for the extended features of COM, including storage,
naming, and exchange of data. These added features are built on top of the core COM fitpdiesaibed in the
previous chapters.

Part IV specifies standards relating to tools used to assist the authorship of COM software. It includes Chapter 13,
which specifies the COM extensions to the standard Interface Definition Language (IDL) of theSOfeare
Foundation (OSF) Distributed Computing Environment (DCE). This will be of interest primarily to tools vendors
who support tools that work with this language. Chapter 14 covers Type Libraries which are the binary equivalent
to IDL.

Finally, Part V specifies information needed by programmers who will be implementing COM on other plat-
formsd that is, the programmer who will be implementing COM on a systems level rather than an application level.
Within Part V, Chapter 15 specifies the protocol useddfyM when performing distributed computing between
machines over a network. This chapter heavily references the OSF DCE RPC specification, noted in the Bibliog-
raphy as [CAE RPC].

DRAFT: October 24,1995 Page:5 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

This page left intentionally blan

Copyright ©199295 Microsoft Corporation Page:6 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

Part I: Component Object Model Introduction

Part | is an overview and introduction to the Component Object Model. The only chapter in Part | (Chapter 1), ex-

plains ata high level the motivations of COM and the problems it addresses. It describes what COM is and its fea-
tures, and describes the major benefits and advantages of COM.

DRAFT: October 24,1995 Page:7 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

This page intentionally left blan

Copyright ©199295 Microsoft Corporation Page:8 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

1. Introduction

1 Challenges Facing The Software Industry

Constant innovation in computing hardware and software have brought a multitude of powerful and sophisticated
applications to users6 desktops and across their net wor
problems for applicatin developers, software vendors, and users:

T Todayds appl i cat i ondsthenareetimécansumiag tadedelop; difficplt ardxcostly to
maintain, and risky to extend with additional functionality.

1 Applications are monolithi@ they come prepzkaged with a wide range of features but most features can-
not be removed, upgraded independently, or replaced with alternatives.

1 Applications are not easily integrat@dlata and functionality of one application are not readily available to
other applicabns, even if the applications are written in the same programming language and running on
the same machine.

1 Operating systems have a related set of problems. They are not sufficiently modular, and it is difficult to
override, upgrade, or replace @®vided services in a clean and flexible fashion.

1 Programming models are inconsistent for no good reason. Even when applications have a facility for coop-
erating, their services are provided to other applications in a different fashion from the services provided by
the operating system or the network. Mover, programming models vary widely depending on whether
the service is coming from a provider in the same address space as the client program (via dynamic linking),
from a separate process on the same machine, from the operating system, or from a proridg on a
separate machine (or set of cooperating machines) across the network.

In addition, a result of the trends of hardware desizing and increasing software complexity is the need for a new
style of distributed, oheaenti zsdoveompmodwmigar Tand Stgmp c

1 A generic set of facilities for finding and using service providers (whether provided by the operating system
or by applications, or a combination of both), for negotiating capabilities with service pro\addrfr ex-
tending and evolving service providers in a fashion that does not inadvertently break the consumers of ear-
lier versions of those services.

1 Use of objecioriented concepts in system and application service architectures to better match the new
generation of objeebriented development tools, to manage increasing software complexity through in-
creased modularity, to nese existing solutions, and to facilitate new designs of moresaéitient soft-
ware components.

1 Client/server computing to k& advantage of, and communicate between, increasingly powerful desktop
devices, network servers, and legacy systems.

1 Distributed computing to provide a single system image to users and applications and to permit use of ser-
vices in a networked environment regardless of location, machine architecture, or implementation environ-
ment.

As an illustration of the issues at harabnsider the problem of creating a system service API (Application Pro-
gramming Interface) that works with multiple providers o
of the service can transparently use any particular provider o$ehgce without any special knowledge of which

specific provider 8 or implementationd is in use. In traditional systems, there is a central piece of
coddconceptually, the service manager is a sortnwobvd HAobj ec
function-call programming models with systemr o vi ded handl es used as odthae means
every application calls to access mefzerations such as selecting an object and connecting to it. But once applica-
tions have jusetd momasgeri®dboperations and are connected t
only gets in the way and forces unnecessary overhead upon all applications as shown in-Eigure 1

DRAFT: October 24,1995 Page:9 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification

""']———'——"'

'T.—.—.'".'.—r.".v. SR

A

Traditional
System
Service

The Component Object Model

A

Interface

. Service Provider |

Figure 1-1: Traditional system sewice APIs require all applications to communicate
through a central manager with corresponding overhead.

In addition to the overhead of the systpnovided layer, another significant problem with traditional service models

is that it is impossible for thprovider to express new, enhanced, or unique capabilities to potential consumers in a
standard fashion. A wellesigned traditional service architecture may provide the notion of different levels of ser-
DPais an lexampe ofCsach aneA®lt) Applicatigns ¢a® BT)
on the minimum level of service, and can determine attime if the provider supports higher levels of service in
certain predefined quanta, but the providers are restricted to providing thesle¥aervices defined at the outset by

vi ce. (Microsoftds Op

the API; they cannot readily provide a new capability and then evangelize consumers to access it cheaply and in a

en

fashion that fits within the standard model. To take the ODBC example, the vendor of a database ptewtden
doing more than the current ODBC standard permits must convince Microsoft to revise the ODBC standard in a way
t hat exposes that vendor 0s

supplemented ia decentralized fashion.

extra

capabilities. Th

us,

Traditional service architectures also tend to be limited in their ability to robustly evolve as services are revised and
versioned. The problem with versioning is one of representing capabilities (what a piece of code caniai)tiapd

A

t

r

ver si

way.

(what a pieceofcods) i n an interrelated, fuzzy way. A |l ater
20 indicalkefisCotdneatv eirtsiiosn 10 but different in some
manners t hat itdos di ff iexadyhowitfdiffers freanoadpeevidus verisiondamdovarseeyet, for cli-

ents of that code to react appropriately to new versiomisto not react at all if they expect only the previous ver-
sion. The versioning probleran be reasonably managed in a traditional system whéme¢g is only a single pro-
vider of a certain kind of service, (iipe version number of the service is checked by the consumer when it binds to
the service, (iiithe service is extended only an upwardcompatible mannér i.e., features can only be added and

never removed (a significant restriction as software evolves over a long period o tsmé¢hat a version N provider

will work with consumers of versions 1 throughINas well, and (ivyeferences to a running instance of the service

are not freely passed around by consumers to other consumers, all of which may expect or require different versions.

But these kind of restrictions are obviously unacceptable in a+wentilor, distributed, modai system with poly-

morphic service providers.

These problems of service management, extensibility, and versioning have fed the problems stated earlier. Applica-

tion complexity continues to increase as it becomes more and more difficult to extend funtgtidviatiolithic ap-
plications are popular because it is safer and easier to collect all interdependent services and the code that uses those
services into one package. Interoperability between applications suffers accordingly, where monolithic applications
are loathe to allow independent agents to access their functionality and thus build a dependence upon a certain be-

havior of the application. Because end users demand interoperability, however, application are compelled to attempt

interoperability, but thiseads directly back to the problem of application complexity, completing a circle of prob-

lems that limit the progress of software develo

pment.

2 The Solution: Component Software

Objectoriented programming has long been advanced as a solution to the problems at hand. However, while ob-

jectoriented programming is powerful, itaB yet to reach its full potential because no standard framework exists

through which software objects created by different vendors can interact with one another within the same address

space, much less across address spaces, and across network and anabhéetwture boundaries. The major result of

Copyright ©199295 Microsoft Corporation
All Rights Reserved

Page:10

DRAFT: October 24,1995

T

The Component Object Model The Component Object Model Specification

the objector i ent ed programming revolution has been the produc
another across the sea of application boundaries in a meaningful way.

The solution is a systemm iwhich application developers create reusauéwarecomponentsA component is a

reusable piece of software in binary form that can be plugged into other components from other vendors with rela-
tively little effort. For example, a component might bepaling checker sold by one vendor that can be plugged into
several different word processing applications from multiple vendors. It might be a math engine optimized for com-
puting fractals. Or it might be a specialized transaction monitor that can ctm¢raiteraction of a number of other
components (including service providers beyond traditional database servers). Software components must adhere to a
binary external standard, but their internal implementation is completely unconstrained. They cait bsifgi
procedural languages as well as objedented languages and frameworks, although the latter provide many ad-
vantages in the component software world.

Software component objects are much like integrated circuit (IC) components, and componeatesisftive inte-

grated circuit of tomorrow. The software industry today is very much where the hardware industry was 20 years ago.
At that time, vendors learned how to shrink transistors and put them into a package so that no one ever had to figure
out howto build a particular discrete functionan NAND gate for exampée ever again. Such functions were made

into an integrated circuit, a neat package that designers could conveniently buy and design around. As the hardware
functions got more complex, the ICs ngantegrated to make a board of chips to provide more complex functionality

and increased capability. As integrated circuits got smaller yet provided more functionality, boards of chips became
just bigger chips. So hardware technology now uses chipsilb éxen bigger chips.

The software industry is at a point now where software developers have been busy building the software equivalent
of discrete transistoés software routined for a long time.

The Component Object Model enables software suppliers tkagectheir functions into reusable software compo-

nents in a fashion similar to the integrated circuit. What COM and its objects do is bring software into the world
where an application developer no longer has to write a sorting algorithm, for exampleing sdgorithm can be

packaged as a binary object and shipped into a marketplace of component objects. The developer who need a sorting
algorithm just uses any sorting object of the required type without worrying about how the sort is implemented. The
dewloper of the sorting object can avoid the hassles and intellectual property concerns ctedertieensing, and

devote total energy to providing the best possible binary version of the sorting algorithm. Moreover, the developer

can take advantageof @ s abi l ity to provide easy extensibility and
robust support for versioning of components, so that a new component works perfectly with software clients expect-

ing to use a previous version.

As with hardware dvelopers and the integrated circuit, applications developers now do not have to worrfi@lout

to build that function; they can simply purchase that function. The situation is much the same as when you buy an

integrated <circuit otrcedtathe IC ¥ tebuddahe 6 youbselfy COMIalowssyou to simply

buy the software component, just as you would buy an integrated circuit. The component is compatible with anything

you fAplugd it into.

By enabling the development of component softw&@®M provides a much more productive way to design, build,

sell, use, and reuse software. Component software has significant implications for software vendors, users, and cor-
porations:

1 Application developers are enabled to build and distribute applioa more easily than ever before.
Component objects provide both scalability from single processes to enterprise networks and modularity for
code reuse. In addition, developers can attain higher productivity because they can learn one object system
for mary platforms.

1 Vendors are provided with a single model for interacting with other applications and the distributed com-
puting environment. While component software can readily be added to existing applications without fun-
damental rewriting, it also providehe opportunity to modularize applications and to incrementally replace
system capabilities where appropriate. The advent of component software will help create more diverse
market segments and niches for small, medium, and large vendors.

1 End-userswill see a much greater range of software choices, coupled with better productivity. Users will
have access to hundreds of objects across client and server plétfohjescts that were previously devel-
oped by independent software vendors (ISVs) and corpomatlaraddition, as users see the possibilities of
component software, demand is likely to increase for specialized components they can purchase at a local
software retail outlet and plug into applications.

DRAFT: October 24,1995 Page:11 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

1 Corporations benefit from lower costs for corpate computing, helping IS departments work more effi-
ciently, and enabling corporate computer users to be more productive. IS developers will spend less time
devel oping gener al purpose software components and
businessspecific solutions. Existing applications do not need to be rewritten to take advantage of a compo-
nent architecture. Instead, corporate developers can create-bbgeste d fAwr apper so t hat e
legacy application and make its operati@amsl data available as an object to other software components in
the network.

3The Component Software Solution: OLEOG6s COM

The Component Object Model provides a means to address problems of application complexity and evolution of
functionality over time. It is a widely available, powerful mechanism for customers to adopt aptt@d new style
multi-vendor distributed computing, while minimizing new software investment.. COM is an open standard, fully
and completely publicly documented from the lowest levels of its protocols to the highest. As a robust, efficient and
workable component architecture it has been proven in the marketplace as the foundation of diverse and several
application areas including compound documents, programming widgets, 3D engineering graphics, stock market data
transfer, high performance transactiongessing, and so on.

The Component Object Model is an objbetsed programming model designed to promote software interoperability;

t hat i s, to allow two or more applications or fAcomponen
written by different vendors at different times, in different programming languages, or if they are running on differ-

ent machines running different operating systems. To support its interoperability features, COM defines and imple-
ments mechanisms that allow applioats to connect to each other sxftware objects. A software object is a col-

|l ection of related function (or intelligence) and the fu

In other words, COM, like a traditional sysy i 0

tem service API, provides the operation

through which a cént of some service car Client _) bject |
connect to multiple providers of that servic pplication Client talks |
in a polymorphic fashion. But once a conne directly — -/
tion is establishedCOM drops out of the D to object E Server
picture. COM serves to connect a client and \ pplicati),
an object, but once that connection is estab-

lished, the bent and object communicate OM: /

directly without having to suffer overhead of

being forced through a central piece of API sablis

code as illustrated in Figure2. SHIsCIL

COM is not a prescribed way o structure agjg,re 1.2: Once COM connects client ad object, the client and

application; rather, it is a set of technologies ™ op.act communicate directly without added overhead.
for building robust groups of services in both

systems and applications such that the services and the clients of those services can evolve over time. In this way,
COM is a technology that makes the programming, use, and uncoordinated/independent evolutiory abipécss

possible COM is not a technology designed primarily for making programming necesesasdlyindeed, some of

the difficult requirements that COM accepts and meets necessarily involve some degree of coplewiguer,

COM provides a ready base for extensions oriented towards increasedfesse as well as a great basis for pow-

erful, easy development environnts, languagespecific improvements to provide better language integration, and
pre-packaged functionality within the context of application frameworks.

This is a fundament al strength of COM over ot hhdrenproopose
the versioning/evolution problem where it is necessary that the functionality of objects can incrementally evolve or
change without the need to simultaneously and in lockstep evolve or change all existing the clients of the object.
Objects/servicesan easily continue to support the interfaces through which they communicated with older clients as

well as provide new and better interfaces through which they communicate with newer clients.

To solve the versioning problems as well providing connectienvises without undue overhead, the Component
Object Model builds a foundation that:

T Enables the creation and use of reusabl e components

1 AEasyodo i s a r d&CQM,somesorsefprogrammingatesimply possibleand t hus the term fieasyo is ut

Copyright ©199295 Microsoft Corporation Page:12 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

1 Defines a binary standard for interoperability.
1 s atrue system object mdde
1 Provides distributed capabilities.
The following sections describe each of these points in more detail.

.1 Reusable Component Objects
Objectoriented programming allows programmers to build flexible and powerful software objects that can easily be
reused by other programmers. Why is this? What is it about objects that are so flexible andIpowerfu

The definition of an object is a piece of software that contains the functions that represent what the object can do (its
intelligence) and associated state information for those functions (data). An object is, in other ssardsgata
structure and some functions to manipulate that structure.

An important principle of objeebriented programming iencapsulationwhere the exact implementation of those
functions and the exact format and layout of the data is only of concehe tbject itself. This information is hid-

den from the clients of an object. Those clients are int
nals. For instance, consider an object that represents a stack: a user of the stack céhes thayobject supports

Apushd and Apopd operations, not whether the stack i s in
client of an object i s 0 the praamisedhehavibrthatrtHe ybject isuppotisenotitimo nt r a c t ¢

plementation it uses to fulfill that contract.

COM goes as far as to formalize the notion of a contract between object and client. Such a contract is the basis for
interoperability, and for interoperability to work on a large scale requires a strordastian

.2 Binary and WireLevel Standards fointeroperability

The Component Object Model defines a completely standardized mechanism for creating objects and for clients and
objects to communicate. Unlike traditional objectented programming environments, these mechanisms are inde-
pendent of the applications thagaiobject services and of the programming languages used to create the objects. The
mechanisms also support object invocations across the network. COM therefore ddjinasyainteroperability
standardrather than a languag®ased interoperability standhon any given operating system and hardware plat-
form. In the domain of network computing, COM defines a standard architentependent wire format and pro-

tocol for interaction between objects on heterogeneous platforms.

.1 Why Is Providing a Binary and Network Standard Important?

By providing a binary and network standard, COM enables interoperability among applications that different pro-
grammes from different companies write. For example, a word processor application from one vendor can connect

to a spreadsheet object from another vendor and import cell data from that spreadsheet into a table in the document.

The spreadsheet objectinturnnfayave a fAhoto | ink to data provided by a
long as the objects support a predefined standard interface for data exchange, the word processor, spreadsheet, and
mai nframe database donot hatter e kmpwemegt @i hgnabdohé war
know how to connect to the spreadsheet; the spreadsheet need only know how to expose its services to anyone who
wishes to connect. The same goes for the network contract between the spreadsheet aimdrsimeend@atabase. All

that either side of a connection needs to know are the standard mechanisms of the Component Object Model.

Without a binary and network standard for communication and a standard set of communication interfaces, pro-
grammers face the dating task of writing a large number of procedures, each of which is specialized for communi-
cating with a different type of object or client, or perhaps recompiling their code depending on the other components
or network services with which they need teeiract. With a binary and network standard, objects and their clients
need no special code and no recompilation for interoperability. But these standards must be efficient for use in both a
single address space and a distributed environment; if the masoharsed for object interaction is not extremely
efficient, especially in the case of local (same machine) servers and components within a single address space,
massmarket software developers pressured by size and performance requirements simply \s#f ihot u

Finally, object communication must be programming langtiagependent since programmers cannot and should
not be forced to use a particular language to interact with the system and other applications. An illustrative problem

is that every C++ vendo s ay s, AfWedve got class libraries and you cée
published for that one vendordés C++ object usually diff
object. To allow application developerstousethbj ect s6 capabilities, each vendor
DRAFT: October 24,1995 Page:13 Copyright © 199295 Microsoft Corporation

All Rights Reserved

The Component Object Model Specification The Component Object Model

the class |ibrary for the objects so that application de
using. By providing a binary standard to which objects conformdeedo not have to send source code to provide
compatibility, nor to users have to restrict the | anguac

jects are compatible by nature.

2 COM6s Standards Enable Object I nteroperability

With COM, applications interact with each other and with the system through collections of functiah atalis

known as methods or member functions or esig called interfaces An fAinterfacedisan the
strongly typedcontract between software components to provide a relatively small but useful set of semantically
related operations. An interface is an articulatiéran expected behavior and expected responsibilities, and the se-
mantic relation of interfaces gives programmers and designers a concrete entity to use when referring to the contract.
Although not a strict requirement of the model, interfaces should berétin such fashion that they can beuszd

in a variety of contexts. For example, a simple interface for generically reading and writing streams of data can be
re-used by many different types of objects and clients.

The use of such interfaces in COM pides four major benefits:

1. The ability for functionality in applications (clients or servers of objects) to evolve over timeThis is
accomplished through a request cal@deryinterfacethat all COM objects support (or else they are not
COM objects).Querylnterfaceallows an object to make more interfaces (that is, new groups of functions)
available to new clients while at the same time retaining complete binary compatibility with existing client
code. In other words, revising an object by adding neven unrelated functionality will not require any
recompilation on the part of any existing clients. Because COM allows objects to have multiple interfaces,
an object can express any number of fiversionons0 si mul
by clients of different vintage. And when its client
t hat in principle cannot be known and therefore fAgua
ence to a particulanterfaceon the object, thus extending the chain of backward compatibility. The use of
immutable interfaces and multiple interfaces per object solves the problem of versioning.

2. Very fast and simple object interaction for sameprocess objects:Once a client establishes a connection
to an object, calls to that objectédés services (inter
two memory pointers. As a result, the performance overhead of interacting withpaacess COM object
(an object that is in the same address space) as the calling code is neblagiblea handful of processor
instructions slower than a standard direct function call and no slower than a coimegilbound C++ sin-
gle-inheritance object invocatioh.

3. ALocati on t r e kinary standacdjovs COM to intercept a interface call to an object and
make instead a&emote procedurecal RPC) to the Areal d instance of the
process or on another machine. A key point is that the caller makes this call exactioaklifor an object
in the same process. Its binary and network standards enables COM to perforsprangss and
crossnetwork function calls transparently. While there is, of course, a great deal more overhead in making a
remote procedure call, no spal code is necessary in the client to differentiate apraetess object from
outof-process objects. All objects are available to clients in a uniform, transparent fAshion.

This is all well and good. But in the real world, it is sometimes necessary for performanmesrédest spe-
cial considerations be taken into account when designing systems for network operation that need not be
considered when only local operation is used. What is needed is not pure local / remote transparency, but

il oc al / remot e st ryamns pnaereedn ctyo, cuanrlee. 6 COM provides tF
2 The term fdinterfacedo is used in a very similar sense i BOljebte Compone
Management Group. I n bot h cssaerre of fuhcéons adce ienpliatly, cagabilitids, entiredyralhsmacteddrom the a
implementation. The major difference between COM and CORBA at this high level is that CORBA objects have one and owelyfamee int
while COM objects can have many interface s i mul t aneous | y. DCE RPC (from OSF) wuses the tern

Indeed,in principle the intrinsic method dispatch overhead of COM is in liesd than the intrinsic overhead of C++ multiple inheritance
method invocations. In a multiple inheritance situation, C++ must on every method invocation adfhit fwénter to be & appropriate for

the actual method which is to be executed. In an COM object which supports multiple interfaces, which is directly aatbgonmsiitiple
inheritance situation, one must of course also do a similar sort of adjustment, and this is ther@uieryinterface method. However, when
using a given interface on the object, one can invQkerylnterface once and use the returned pointer many times. Thus, the cost of the
Querylnterface operation can be amortized over all the subsequent usagiingsn less overall dispatch overhead. Be aware, however, that
this distinction is completely academic. In almost all real word situations, both dispatch mechanisms provide more thgenpetéamance.
There can be subtle differences in the flofscontrol between calling Hprocess and oubf-process objects. In particular, an -@dtprocess
object call may result in a caltlack prior to the completion of the original call. COM provides standard mechanisms to deal wlhidc&albnd
reentrancy; even on singtbreaded operatingystems. Without such standards, true interoperability betweeof-guibcess objects (of which
crossnetwork objects is just a typical case) is impossible.

Copyright ©199295 Microsoft Corporation Page:14 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

mentor can if he wishes suppamistom marshalingvhich allows his objects to take special action when
they are used from across the network, different action if he would like than idrutlegl local case. The

key point is that this is done completely transparently to the client. Taken as a whole, this architecture al-
lows one to design client / object interfaces at their natural and easy semantic level without regard to net-
work performancéssues, then at a later address network performance issues without disrupting the estab-
lished design.

4. Programming language independenceBecause COM is a binary standard, objects can be implemented in
a number of different programming languages anedufsom clients that are written using completely dif-
ferent programming languages. Any programming language that can create structures of pointers and ex-
plicitly or implicitly call functions through pointeés languages such as C, C++, Pascal, Ada, Smalléalé
even BASIC programming environmedtgan create and use COM objects immediately. Other languages
can easily be enhanced to support this requirement.

In sum, only with a binary standard can an object model provide the type of structure necessdrinferdperabil-

ity, evolution, and raise between any application or component supplied by any vendor on a single machine archi-
tecture. Only with an architectuiedependent network wire protocol standard can an object model provide full in-
teroperability,evolution, and reise between any application or component supplied by any vendor in a network of
heterogeneous computers. With its binary and networking standards, COM opens the doors for a revolution in soft-
ware innovation without a revolution in netvkamg, hardware, or programming and programming tools.

.3 A True System Object Model

To be a true system model, an object architecture must allow a distributed, evolving system to support millions of
objects without risk of erroneous connections of objects and other problems related to strong typing or definition.
COM is suchan architecture. In addition to being an objbaesed service architecture, COM is a true system object
model because it:

T Uses figlobally unique identifierso to identify object
1 Provides methods for code reusability without the problems of traditional langtgigeimplementation inher-
itance.

1 Has a single programming model forfgmocess, crosprocess, and crosgetwork interaction of software com-
ponents.

1 Encapsulates theféi-cycle of objects via reference counting.
1 Provides a flexible foundation for security at the object level.
The following sections elaborate on each of these aspects of COM.

.1 Globally Unique Identifiers

Distributed object systems have potentially millions of interfaces and software components that need to be uniquely
identified. Any system that uses humezadable names for finding and binditlgmodules, objects, classes, or re-
quests is at risk because the probability of a collision between hueeaable names is nearly 100% in a complex
system. The result of nariEased identification will inevitably be the accidental connection of two or rsoftevare
components that were not designed to interact with each other, and a resulting error@remexstthough the com-
ponents and system had no bugs and worked as designed.

By contrast, COM uses globally unique identifiers (GUI®g)28bit integers thaare virtually guaranteed to be
unigue in the world across space and #ne identify every interface and every object class and bypkese glob-

ally unique identifiers are the same as UUIDs (Universally Unique IDs) as defined by DCE. Heatsble names
are assigned only for convenience and arallgcscoped. This helps insure that COM components do not acci-
dentally connect to an object or via an interface or method, even in networks with millions of &bjects.

S Although #Aclasso and Atyped can often be wused i nthichisthaunigreoathel vy , in C
interfaces that the object supports. ACl assoOo i s a pratidnspecifi¢t a-r 1 mpl e me
tributes such as product name, i ¢ onaGuD hy whomever first dedinepthaé particuldr eombic har t 0 t

nation of interfaces) might be supported by Lote®-3 for Windows and Microsoft Excel for the Macintosh, each of which are separate clas-
ses. Normally, types are polymorphic; any consumer of the ssngovided by interfaces making up the type can use any class that imple-
ments the type.

6 As an illustration of how unique GUIDs are consider that one could generate 10 @@illits a second until the year 5770 AD and each one
would be unique.

DRAFT: October 24,1995 Page:15 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

.2 Code Reusability and Implementation Inheritance

Implementation inheritanéet he abil ity of one component to fAsubcl asso
anot her componreindti nwghdi |oetdhiea veefrusefd tedhmology for building applications. But

more and more experts are ctuding that it creates serious problems in a loosely coupled, decentralized, evolving
object system. The problem is technically known as the lack of-sgfety in the specialization interface and is
well-documented in the research literatdre.

The gener al problem with traditional i mpl ementation inhe
an implementation hierarchy is not clearly defined; indeed, it is implicit and ambiguous. When theoparieitd

component changes its implementation, the behavior of related components may become undefined. This tight cou-
pling of implementations is not a problem when the implementation hierarchy is under the control of a defined group

of programmers who caiif necessary, make updates to all components simultaneously. But it is precisely this ability

to control and change a set of related components simultaneously that differentiates an application, even a complex
application, from a true distributed objesystem. So while traditional implementation inheritance can be a very

good thing for building applications and components, it is inappropriate in a system object model.

Today, COM provides two mechanisms for code reuse cakedainment/delegatioand aggregation In the first

and more common mechani sm, one object (the fAouterodo objec
the second object (the Ainnero object) as a provider of
mertation. For example, the outer object may implement only stub functions that merely pass through calls to the

inner object, only transforming object reference parameters from the inner object to itself in order to maintain full
encapsulation. This is reglho different than an application calling functions in an operating system to achieve the

same ends$ other objects simply extend the functionality of the system. Viewed externally, clients of the outer ob-

ject only ever see the outer obj@ct h e i n niermre didc ok jae c t i ® encapsulpteddrone View. hi dden
And since the outer object is itself a client of the inner object, it always uses that inner object through a clearly de-
fined contracts: the inner obj ectegte innertolgactfsigns ¢he contBat | mp |

promising that it will not change its behavior unexpectedly.

With aggregationthe second and more rare reuse mechanism, COM objects take advantage of the fact that they can
support multiple interfaces. An aggregatgject is essentially a composite object in which the outer object exposes

an interface from the inner object directly to clients as if it were part of the outer object. Again, clients of the outer

object are impervious to this fact, but internally, theees object need not implement the exposed interface at all. The
outer object has determined that the implementation of t
itself, and can reuse that implementation accordingly. But the oujectab still a client of the inner object and there

is still a clear contract between the inner object and any client. Aggregation is really nothing more than a special case

of containment/delegation to prevent the outer object from having to implementeaface that does nothing more

than delegate every function to the same interface in the inner object. Aggregation is really a performance conven-
ience more than the primary method of reuse in COM.

Both these reuse mechanisms allow objects to explostiagi implementation while avoiding the problems of tradi-

tional implementation inheritance. However, they lack a powerful, if dangerous, capability of traditional implemen-
tation inheritance: the ability oftmaghtmdké dndtselband cverride t o A h ¢
entirely or supplement partially the parentds behavior.
but it is also the key area where imprecision of interface and implicit couplingm&mentation(as opposed to

interface) creeps in to traditional implementation inheritance mechanisms. A future challenge for COM is to define a

set of conventions that components can use to provide t
maintainingthe strictness of contract between objects and the full encapsulation required by a true system object
model, even those in?&iparent/childo relationships.

7 See, forexample, Richard Helm (Senior Researcher, IBM Thomas J. Watson Research Gamgar)yg Semantic Integrity of Reusable
Objects (Pane]) OOPSLA 0692 Conference Proceedi nHypingthp Spgdabzationlirdenfac®QPSLAp i ng (Xer
0 9 dnfeCence Proceedings, p.201.

8 Readers interested in this issue shoul d eChapterilh eCohnbctablefiobjects rraldetaab | e o b j
event model that provides a standard, powerful convention for a COM object to signal to any interested client thabis@lsontathing, that
is doing something, and that it is finished doing something. Thaehadso allows clients to cancel the event outright or to cancel it in favor of
an floverridingdo event supplied by the client. This ev¢hmltthema-del coupl
ditional features of implementatidnheritance and more without the traditional risks. For an interesting discussion of the problems of tradi-
tional implementation inheritance as well as a description of how an inheritance system might be provide roba$ttyymee Haucknher-
itance Modeled with Explicit Bindings: An Approach to Typed InheritanceOOP SLA 693 Conference Proceedings, i

Copyright ©199295 Microsoft Corporation Page:16 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

.3 Single Programming Model

A problemrelated to implementation inheritance is the issue of a single programming modelpfarcess objects

and outof-process/crosaetwork objects. In the former case, class library technology (or application frameworks)
permits only the use of featuresaujects that are in a single address. Such technology is far from permitting use of

code outside the process space let alone code running on another machine altogether. In other words, a programmer
candt subclass a remot e o 8iniarky,tfeatures like @ublic eatai itenss iniclagsds ¢hate nt at
can be freely manipul ated by other objects within a si:
boundaries. In contrast, COM has a single interlaased binding model and has bemrefully designed to mini-

mize differences between the-fmocess and otf-process programming model. Any client can work with any ob-

ject anywhere else on the machine or network, and because the object reusability mechanisms of containment and
aggregatio maintain a client/server relationship between objects, reusability is also possible across process and
network boundaries.

.4 Life-cycle Encapsulation

In traditional object systems, the lifgycle of objectd the issues surrounding the creation and deletion of ob-
ject®d is handled implicitly by the language (or the language runtime) or explicitly by application programmers. In
other words, an objediased pplication, there is always someone (a programmer or team of programmers) or some-
thing (for example, the startup and shutdown code of a language runtime) that has complete knowledge when objects
must be created and when they should be deleted.

But in an ewlving, decentralizedystemmade up of objects, it is no longer true that someone or something always
Aknowso how t o doycel Objedt crdation ib §tikk relatively edsye assuming the client has the right

security privileges, an object igeated whenever a client requests that it be created. But object deletion is another
matter entirely. H o va prios whiert an plgest ssind lormer heededi dnad should be deleted?

Even when the original client is done with the objetct,ic an 6t simply shut the object d
passed a reference to the object to some other client in the system, and how can it know if/fwhen that client is done

with the object® or if that second client has passed a reference to adheémt of the object, and so on.

At first, it may seem that there are other ways of dealing with this problem. In the case oproosss and
crossnetwork object usage, it might be possible to rely on the underlying communication channel to inform the
system when allconnectiongo an object have disappeared. The object can then be safely deleted. There are two
drawbacks to this approach, however, one of which is fatal. The first and less significant drawback is that it simply
pushes the problem out thd next level of software. The object system will need to rely on a conneaxtiemted
communications model that is capable of tracking object connections and taking action when they disappear. That
might, however, be an acceptable traufé

But the seond drawback is flatly unacceptable: this approach requires a major difference between the
crossprocess/crosaetwork programming model, where the communication system can provide the hook necessary
for life-cycle management, and the singlecess progrmaming model where objects are directly connected together
without any intervening communications channel. In the latter case, objecytife issues must be handled in some
other fashion. This lack of location transparency would mean a difference iprtéggamming model for sin-
gle-process and crogzocess objects. It would also force clients to make a-émeall compiletime decision about
whether objects were going to runpmocess or oubf-process instead of allowing that decision to be madesbss

of the binary component on a flexible, ad hoc basis. Finally, it would eliminate the powerful possibility of composite
objects or aggregates made up of botiprincess and owf-process objects.

Could the issue simply be ignored? In other words, ¢aué simply ignore garbage collection (deletion of unused
objects) and allow the operating system to clean up unneeded resources when the process was eventually torn down?
Thatnonisol uti ondo mi ght be tempting i n ysemfikesataptop cowiputen) j u st
that comes up and down frequently. It is totally unacceptable, however, in the case of an environment where a single
process might be made up of potentially thousands of objects or in a large server machine that musimedwer st

either case, lack of lifeycle management is essentially an embrace of an inherently unstable system due to memory
leaks from objects that never die.

There is only one solution to this set of problems, the solution embraced by COM: clients iarstoigject when

they are using it and when they are done, and objects must delete themselves when they are no longer needed. This
approach, based on reference countingchpygl al enodbpecht st i or
objects ae truly encapsulated and se#iiant if and only if they are responsible, with the appropriate help of their

clients acting singly and not collectively, for deleting themselves.

DRAFT: October 24,1995 Page:17 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

Reference counting is admittedly complex for the new COM programmer; aygutalsl the most difficult aspect of

the COM programming model to understand and to get right when building completogeesr COM applications.
When viewed in light of the nealternatives, however, its inevitability for a true system object model fuithoca-

tion transparency is apparent. Moreover, reference counting is precisely the kind of mechanical programming task
that can be automated to a large degree or even entirely bylesitined programming tools and application frame-
works. Tools and frmeworks focused on building COM components exist today and will proliferate increasingly
over the next few years. Moreover, the COM model itself may evolve to provide support for optionally delegating
life-cycle management to the system. Perhaps most tanptity, reference counting in particular and native COM
programming in general involves the kind of mislift for programmerd as in GUI eventriven programming just

a few short years agothat seems difficult at first, but becomes increasingly easy, skeandnature, then almost
trivial as experience grows.

.5 Security

For a distributed object system to be useful in the real world it must provide a means for securtoadgesss and

the data they encapsulate. The issues surrounding system object models are complex for corporate customers and
ISVs making planning decisions in this area, but COM meets the challenges, and is a solid foundation for an enter-
prisewide compting environment.

COM provides security along several crucial dimensions. First, COM uses standard operating system permissions to
determine whether a client (running in a particular useil
with a particular class of object. Second, with respect to persistent objects (class code along with data stored in a
persistent store such as file system or database), COM uses operating system or application permissions to determine

if a particular client catoad the object at all, and if so whether they have-@dg or readwrite access, etc. Finally,

because its security architecture is based the design of the DCE RPC security architecture, anshaddsiny
communications mechanism that includes fulfuthenticated sessions, COM provides cyqosxess and

crossnetwork object servers with standard security information about the client or clients that are using it so that a
server can use security in more sophisticated fashion than that of simple @Bsd@ns on code execution and

read/write access to persistent data.

.4 Distributed Capabilities

COM supportgistributed objectsthat is, it allows application developers to split a single application into a number

of different component objects, each of which can run on a different computer. Since COM provides netvgork tra
parency, these applications do not appear to be located on different machines. The entire network appears to be one
large computer with enormous processing power and capacity.

Many singleprocess object models and programming languages exist todayfanddastributed object systems are
available. However, none provides an identical, transparent programming model for srpadicéss objects, me-

dium outof-process objects on the same machine, and potentially huge objects running on another macleine on th
network. The Component Object Model provides just such a transparent model, where a client uses an object in the
same process in precisely the same manner as it would use one on a machine thousands of miles away. COM explic-
itly bars certtuadesachkas dirdcs acaeds tofobjectadata, properties, or vamdathes might be
convenient in the case of-process objects but would make it impossible for anadtirocess object to provide the

same set of services. This is calledation transpaency

4 Objects and Interfaces

What is an object? An object is an indiation of someclass At a generic | evel, a fAcl assc
related data and capabilities grouped together for some distinguishable common purpose. The purpose is generally to
provide some service t o Ilctlientstha santtomakesusedrthoselseavicesb j e ct |, nam

A object that conforms to COM is a special manifestation of this definition of object. A COM object appears in
memory much like a C++ object. Unlike C++ objects, however, a client never has directtacites€ OM object in

its entirety. Instead, clients always access the object through clearly defined contracts: the interfaces that the object
supportsand only those interfaces

What exactly is an interface? As mentioned earlier, an interface is a Istitypgd group of semanticaHielated
functions, al so called fAinterface member functions. o0 The
vention, as inunknown. (The real identity of an interface is given by its GUID; names are a progregreonven-

ience, and the COM system itself uses the GUIDs exclusively when operating on interfaces.) In addition, while the

Copyright ©199295 Microsoft Corporation Page:18 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

interface has a specific name (or type) and names of member functions, it defines only how one would use that inter-
face and what betvior is expected from an object through that interface. Interfaces do not define any implementa-
tion. For example, a hypothetical interface calledck that had member functions efish and Pop would only de-

fine the parameters and return types for thingetions and what they are expected to do from a client perspective;

the object is free to implement the interface as it sees fit, using an array, linked list, or whatever other programming
methods it desires.

When an object fili mpl ebieet mplemer@neach meneber ffuactien @f the linterface and pro-

vides pointers to those functions to COM. COM then makes those functions available to any client who asks. This
terminology is used in this document to refer to the object as the importamér@ién the discussion. An equivalent

term i s an Ainterface on an objecto which means the obj ¢
sion is the interface instead of the object.

.1 Attributes of Interfaces

Given that an interface is a contractual way for an object to expose its services, there are four very important points
to understand:

Aninterfaceisnad aclasssAn interface is not a class in the nor mal de
to form an object. An interface cannot be instantiated by itself because it carries no implementation. An object must
implement that interface and thabbject must be instantiated for there to be an interface. Furthermore, different ob-

ject classes may implement an interface differently yet be used interchangeably in binary form, so long as the be-
havior conforms to the interface definition (such as twceotsj that implemenstack where one uses an array and

the other a linked list).

An interface is not an object: An interface is just a related group of functions and is the binary standard through
which clients and objects communicate. The object can Ipgemmented in any language with any internal state rep-
resentation, so long as it can provide pointers to interface member functions.

Interfaces are strongly typed: Every interface has its own interface identifier (a GUID) thereby eliminating any
chance of ollision that would occur with humareadable names. Programmers must consciously assign an identifier

to each interface and must consciously support that interface and/or the interfaces defined by others: confusion and
conflict among interfaces cannot lpgm by accident, leading to much improved robustness.

Interfaces are immutable Interfaces are never versioned, thus avoiding versioning problems. A new version of an
interface, created by adding or removing functions or changing semantics, is an ergireinterface and is as-

signed a new unique identifier. Therefore a new interface does not conflict with an old interface even if all that
changed is the semantics. Objects can, of course, support multiple interfaces simultaneous; and they can have a sin-

gle internal implementation of the common capabilities exposed through two or more similar interfaces, such as
Afversionso (progressive revisions) of an interface. Thi s
object avoids versioning promns.

Two additional points help to further reinforce the second point about the relationship of an object and its interfaces:

Clients only interact with pointers to interfaces: When a client has access to an object, it has nothing more than a

pointer through which it can access the functions in the interface, called simpijeaiace pointer The pointer is

opaque, meaning that it hides all aspects of internal implementat@mncannot see any details about the object such

as its state information, as opposed to Wbiject pointers hr ough which a <c¢cl ient may dir
data. In COM, the client can only call functions of the interface to which it has a pdeinstead of being a re-

striction, this is what allows COM to provide the efficient binary standard that enables location transparency.

Objects can implement multiple interfaces A object class cah and typically doed implement more than one

interface. That is, the class has more than one set of services to provide from each object. For example, a class might
support the ability to exchange data with clients as well as the ability to save its persistent state information (the data

it would needtoreloadot return to its current state) into a file at
pressed through a different interface, so the object must implement two interfaces.

Note that just because a class supports one interface, there is no geqerra@ment that it supports any other. Inter-

faces are meant to be small contracts that are independent of one another. There are no contractual units smaller than
interfaces; if you write a class that implements an interface, your class must implehtéetfahctions defined by

that interface (the i mpl domgythihgh Alsomaote tilabae shied maydé¢ atteampttigth ave t
conform to a higher specification than COM, such as a ¢
mentsarchitecture. In such cases, the objects in question must implement specific groups of interfaces to conform to

DRAFT: October 24,1995 Page:19 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

the OLE Documents specification for compound documents. It is then true that all compound document objects will
always implement the same baskt of interfaces, but those interfaces themselves do not depend on the presence of
the others. It is instead the clients of those objects that depend on the presence of all the interfaces.

The encapsulation of functionality into objects accessed through interfaces makes COM an open, extensible system.
It is open in the sense that anyone can provide an implementation of a defined interface and anyone can develop an
application that uses sudtterfaces, such as a compound document application. It is extensible in the sense that new
or extended interfaces can be defined without changing existing applications and those applications that understand
the new interfaces can exploit them while contirg to interoperate with older applications through the old interfac-

es.

.2 Object Pictures

It is convenient to adopt aastdard pictorial representation for objects and their interfaces. The adopted convention is

to draw each interfamne j@ackan dJdhjeset iad ea ffaglesg are gener ¢
of a box representing the object as a whaseillustrated in Figure-B. If desired, the names of the interfaces are

positioned next to the interface jack itself.

A Q

Interfaces B)ojec
cQ l

Figure 1-3: A typical picture of an object that supports three interfaces A, B, and C.

The side fom which interfaces extend is usually determined by the position of a client in the same picture, if appli-
cable. If there is no client in the picture then the convention is for interfaces to extend to the left as done in Figure
1-3. With a client in the miture, the interfaces extend towards the client, and the client is understood to have a point-
er to one or more of the interfaces on that object as illustrated in Figlire 1

lient) Objec
plication Interface
Pointer

Figure 1-4: Interfaces extend towards the cliats connected to them.

In some circumstances a client may itself implement a small object to provide another object with functions to call
on various events or to expose services itself. In such cases the client is also an object implementor andithe object
also a client. lllustrations for such are similar to that in Figube 1

Application
Dbjec
O —
Application
J
Figure1-5: Two applications may connect to each ot he

case they extend their interfaces towards each other.

Some objectsnay be acting as an intermediate between other clients in which case it is reasonable to draw the object
with interfaces out both sides with clients on both sides. This is, however, a less frequent case than illustrating an
objects connected to one client.

There is one interface that demands a little special attentiokriown. This is the base interface of all other interfac-
es in COM that all objects must support. Usually by implementing any interface at all an object also implements a set

Copyright ©199295 Microsoft Corporation Page:20 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

of Iunknown functions that are contained within that implemented interface. In some cases, however, an object will
implementiunknown by itself, in which case that interface is extended from the top of the object as shown in Figure
1-6.

IUnknown

Other :)
Interfaces O “;:::::;:

Figure 1-6: The lunknown interface extends from the
top of objects by convention.

In order to use an interface on a object, a client needs to know what it would want to do with that iterfacet 6 s

what makes it a client of an interface rather thangustc | i ent of t hée noljjaedktdo. clom ctetpe , fi pl
to have the right kind of plug to fit into the interface jack in order to do anything with the object through the inter-
face. This is like having a stereo system which has a number efdi#Ent j acks for iinputs and

stereo jack for headphones, a coax input for an external CD player, and standard RCA connectors for speaker output.
Only headphones, CD players, and speakers that have the matching plugs are able to fiegsiereo object and
make use of its services. Objects and interfaces in COM work the same way.

.3 Objects with Multiple Interfaces andQuerylnterface

In COM, an object can support multiple interfaces, that is, provide pointers to more than one grouping of functions.
Multiple interfaces is a fundamental innovation of COM as the ability for such avoids versioning prolitarfad-

es are immutable as described earlier) and any strong association between an interface and an object class. Multiple
interfaces is a great improvement over systems in which each object only has one massive interface, and that inter-
face is a colleddn of everything the object does. Therefore the identity of the object is strongly tied to the exact
interface, which introduces the versioning problems once again. Multiple interfaces is the cleanest way around the
issue altogether.

The existence of mufile interfaces does, however, bring up a very important question. When a client initially gains
access to an object, by whatever means, that client is giveand only ondnterface pointer in return. How, then,
does a client access the other interfameshat same object?

The answer is a member function calleekryinterface that is present in all COM interfaces and can be called on any
interface polymorphicallyQueryinterface is the basis for a process caliederface negotiatiorwhereby the clienasks

the object what services it is capable of providing. The question is asked by caléiygterface and passing to that
function the unique identifier of the interface representing the services of interest.

Hereds how it wor kygains acbessrto aa obett,ithatrclient wilhreceive at minimur@nown
interface pointer (the most fundamental interface) through which it can only control the lifetime of thé dbject
the object when it is done using the obfeend invokeQueryinterface. The client is programmed to ask each object it
manages to perform some operations, butithienown interface has no functions for those operations. Instead, those
operations are expressed through other interfaces. The client is thus programmagodttate with objects for those
interfaces. Specifically, the client will ask each obgebtty calling Queryinterfaced for an interface through which the
client may invoke the desired operations.

Now since the object implementaeryinterface, it has the allity to accept or reject the request. If the object accepts

t he cl i e mtediserfate eetpyunseasnew pointer to the requested interface to the client. Through that interface
pointer the client thus has access to the functions in that inteiffatcte. on t he ot her hand, the o
request,Queryinterface returns a null pointér an errod and the client has no pointer through which to call the de-

sired functions. An illustration of both success and error cases is shown in Figusbdre the client initially has a

pointer to interface A and asks for interfaces B and C. While the object supports interface B, it does not support in-
terface C.

DRAFT: October 24,1995 Page:21 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

Pointer to A
obtained on
object creation

- f\A

I
' > OB dbject
1ent

null
S
J
Pointer to B
Pointer to C obtained from

not available A 0 Querylnterface

from A or Bods
Querylinterface
Figure 1-7: Interface negotiation means that a client musask an object for an interface
pointer that is the only way a client can invoke functions of that interface.

A key point is that when an object rejects a calteryinterface, it is impossible for the client to ask the object to
perform the operationsxpressed through the requested interface. A clieasthave an interface pointer to invoke
functions in that interface, period. If the object refuses to provide one, a client must be prepared to do without, simp-
ly failing whatever it had intended to dotithat object. Had the object supported that interface, the client might
have done something useful with it. Compare this with other olojeehted systems where you cannot know wheth-

er or not a function will work until you call that function, and evdrent, handling of failure is uncertain.
Querylinterface provides a reliable and consistent way to know before attempting to call a function.

.1 Robustly Evolving Functionality Over Time

Recall that an important feature of COM is the ability for functionality to evolve over time. This is not just important

for COM, but important for all applicationgueryinterface is the cornerstone of that feature as it allows a client to ask

an obdoecytoui support functionality X?0 It allows ifhe clie
and only ifan object supports it. In this manner, the client easily maintains compatibility with objects written before

and after t Hitgwal Xvailablepyamd doesemima robust manner. An old object can reliably answer the
guestion fAdo you support X0 with a fAinod whereas a new o0
asked by callingQueryinterface and therefore on a ctmactby-contract basis instead of an individual func-
tion-by-function basis, COM is very efficient in this operation.

To illustrate theQueryinterface cornerstone, imagine a client that wishes to display the contents of a number of text

files, and it knowghat for each file format (ASCIIl, RTF, Unicode, etc.) there is some object class associated with

that format. Besides a basic interface likeknown, which weol |l call interface A, t h
wishes to use to achieve its endgenfiace B allows a client to tell an object to load some information from a file (or

to save it), and interface C allows a client to request a graphical rendering of whatever data the object loaded from a

file and maintains internally.

With these interfaces, the client is then programmed to process each file as follows:
1. Find the object class associated with a the file format.
Instantiate an object of that class obtaining a pointer to a basic interface A in return.

3. Checkiftheobj ect supports | oading datQerlfafaefuncionfeguest- by c al
ing a pointer to interface B. If successful, ask the object to load the file through interface B.

4. Check if the object supports graphical rendering ofitsda by cal | i n g Quierpnterface fine-c e A o r
tion (doesnot matter which interface, because querie
terface C. If successful, ask the object for a graphic of the file contents that the cliedigblays on the
screen.

I f an object class exists for every file format in the

and C, then the client will be able to display all the contents of all the files. But in an imperfectiwerld,6 s say t ha
the object class for the ASCII text formats does not support interface C, that is, the object can load data from a file

and save it to another file if necessary, but candt supy
encounters this object, theueryinterface for interface C fails, and the client cannot display the file contents. Oh

well...

Copyright ©199295 Microsoft Corporation Page:22 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

Now the programmers of the object class for ASCII real i
support graphics,rad so they update the object class such that it now supports interface C. This new object is in-
stalled on the machine alone with the client application, but nothing else changes in the entire system. The client
code remains exactly the same. What now hapgbe next time someone runs the client?

The answer is that the cliemhmediately begins to use interface C on the updated objécere before the object
failed Queryinterface when asked for interface C, it now succeeds. Because it succeeds, theatiemw display the
contents of the file that it previously could not.

Here is the raw power @jueryinterface: a client can be written to take advantage of as much functionality as it would
ideally like to use on every object it manages. When the clienbenters an object that lacks the ideal support, the
client can use as much functionality as is available on that given object. When the object it later updated to support
new interfaces, the same exact code in the client, without any recompilationlongdept, or changes whatsoever,
automatically begins to take advantage of those additional interfaces. This is true component software. This is true
evolution of components independently of one another and retaining full compatibility.

Note that this procsgs also works in the other direction. Imagine that since the client application above was shipped,
all the objects for rendering text into graphics were each upgraded to support a new interface D through which a
client might ask the object to spelheck he text. Each object is upgraded independently of the client, but since the
client never queries for interface D, the objects all continue to work perfectly with just interfaces B and C. In this
case the objects support more functionality than the clirtstill retain full compatibility requiring absolutely no
changes to the client. The client, at a later date, might then implement code to use interface D as well as code for yet
a newer interface E (that supports, say, language translation). Thatbdgins to immediately use interface D in all
existing objects that support it, without requiring any changes to those objects whatsoever.

This process continues, back and forth, ad infinitum, and applies not only to new interfaces with new functionality

but also to improvements of existing interfaces. Improved interface are, for all practical purposes;aebvanter-

face because any change to any interface requires a new interface identifier. A new identifier isolates an improved
interface from its preelcessor as much as it isolates unrelated interfaces from each other. There is no concept of
Afversionodo because the interfaces are totally different i

So up to this point there has been this problem of versioning, presented at the beginnisgcbhéphtér, that made
independent evolution of clients and objects practically impossible. But now, for all gimag)nterface solves that
problem and removes the barriers to rapid software innovation without the growing pains.

5 Clients, Servers, and Object Implementors

The interaction between objects and the users of thbgets in COM is based on a client/server model. This chap-

ter has already been using the term é6clientd to refer toc
cause an object supplies services, the implementor of that object isusaudllyoed t he fAserver, 0 the
those capabilities. A client/server architecture in any computing environment leads to greater robustness: if a server
process crashes or is otherwise disconnected from a client, the client can handle that protaéuniygesnd even

restart the server if necessary. As robustness is a primary goal in COM, then a client/server model naturally fits.

However, there is more to COM than just clients and servers. There arebgsb implementorsor some program

structurethat implements an object of some kind with one or more interfaces on that object. Sometimes a client
wishes to provide a mechanism for an object to call back to the client when specific events occur. In such cases,
COM specifies that the client itself irpe me nt s an object and hands that object
object outside the client. In that sense, both sides are clients, both sides are servers in some way. Since this can lead
to confusion, t he ter m ~fespacificefasiion ieadingtp the follewdng definitiens thet ¢ h mo
apply in all of COM:

Object A unit of functionality that implements one or more interfaces to expose that functionality. For conven-
ience, the word is used both to refer to an object class dsawean individual instantiation of a class.
Note that an object class does not need a class identifier in the COM sense such that other applications
can instantiate objects of that clésthe class used to implement the object internally has no bearing on
the externally visible COM class identifier.

Object Implementor Any piece of code, such as an application, that has implemented an object with any inter-
faces for any reason. The object is simply a means to expose functions outside the particular applicatio

such that out side agents can call those functions.
some fAobject implementoro unless stated other wise.
DRAFT: October 24,1995 Page:23 Copyright © 199295 Microsoft Corporation

All Rights Reserved

The Component Object Model Specification The Component Object Model

Client There are two definitions of this word. The general definition is any piece of code thsimgsthe ser-
vices of some object, wherever that object might be implemented. A client of this sort is also called an
Afobject user. o The second definition is the active
between itself an other object and uses specific COM fAi mpl ementatio
or create objects through servers of various object classes.

Server A piece of code that structures an object class in a specific fashion and assigns that class a COM class
identifier. This enables a client to pass the class identifier to COM and ask for an object of that class.
COM is able to load and run the server code, ask the sever to create an object of the class, and connect
that new object to the client. A server is specifigdlie necessary structure around an object that serves
the object to the rest of the system and associates the class identifier: a server is not the object itself.
The word fAservero is used in discussions.Theo empha
phrase fiserver objecto is used specifically to ide
context is appropriate.

Putting all of these pieces together, imagine a client application that initially uses COM services to create an object
of a particular class. COM will run the server associated with that class and have it create an object, returning an
interface pointer to the client. With that interface pointer the client can query for any other interface on the object. If

a client wantdo be notified of events that happen in the object in the server, such as a data change, the client itself

wi || i mpl ement an fAevent sinkd object and pass the inte
interface function call. The segr holds onto that interface pointer and thus itself becomes a client of the sink object.
When the server object detects an appropriate event, it

overall configuration created in this scenaisomuch like that shown earlier in Figure51 There are two primary

modules of code (the original client and the server) who both implement objects and who both act in some aspects as
clients to establish the configuration.

When both sides in a configuration i mplement objects the
ing the active agent who drives the flow of operation between all objects, even when there is more than one piece of

code that is acting lika client of the first definition. This specification endeavors to provide enough context to make

it clear what code is responsible for what services and operations.

.1 Server Flavors: InProcess and OuOf-Process

As defined in the | ast section, a Aservero in general [
t hat COM #fi mpl eme nt ouon tHatocoda tandl have itsceeatey abeatss The sectionrbelow entitled
AiThe COM Libraryd expands on the specific responsibiliti
Any specific server can be implemented in one of a number of flavors depending on the structure of thedtdde
and its relationship to the client -processotWwhlitcwi méams
executes in the same proadpssescepadewhischh hmeahsent , rons fAbl
same machine r in another process on a remote maphocessTbhedeo
cal , o and Aremoteodo as defined bel ow:

In-Process Server A server that can be | oaded i ntpa otchees scloibg retcd s

Under M crosoft Wi ndows and Microsoft Wi ndows NT, t he
brariesodo or DLLs. DIlhass gesgiicterin foideseibeiaoyrpiece sfeade that can
be loaded in this fashion which will, of course, differ between dpregaystems.

Local Server A server that runs in a separate process on th
objects. o0 This type of server is another mpommmpl ete
cess This specification uses thee r EXEO i execufabl® t o descri be an applicat

own process as opposed to a DLL which must be loaded into an existing process.

Remote Server A server that runs on a separate machine and therefore always runs in another pro@#iss as w
t o seemoteo bfj ect s. 0 Remote servers may be i mpl ement
server is implemented in a DLL, a surrogate process will be created for it on the remote machine.

Note that theroame swaor dismootftéadl ,aor eanuds efidr ein t his specificat
Afobjecto where emphasis is on the object more than the s

Object implementors choose the type of server based on the requirements of implementation and deployment. COM
is designed to hatle all situations from those that require the deployment of many small, lightweightb@ess
objects (like controls, but conceivably even smaller) up to those that require deployment of a huge central corporate

Copyright ©199295 Microsoft Corporation Page:24 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

database server. Furthermore, COM doe#sa transparent fashion, with what is calledation transparencythe
topic of the next section.

.2 Location Transparency

COM is designed to allow clients toansparentlycommunicate with objects regardless of where those objects are

running, be it the same process, the same machine, or a different machine. What this means is thatdimgle is a
programming modefor al types of objects for not only clients of those objects but also for the servers of those ob-

jects.

From a clientdéds point of view, al | obj ect s-precess, andmcess t
fact, any call to an interface funch always reachesomepiece of inprocess code first. If the object ismocess,

the call reaches it directly, with no intervening systirfriastructure code. If the object is enf-process, then the

cal | first reaches whpmdvided by COM litdelé whichagenenatesothe yappropristg rensote
procedure call to the other process or the other machine.

From a serverés point of view, al | calls to an objectbds
Again, a poinér only has context in a single process, and so the caller must always be some pigqurecdss code.

If the objectisinpr ocess, the caller is the client itself. Ot her wi
picks up the remote procedie c al | from the fAiproxyod in the client proc

server object.

As far as both clients and servers know, they always communicate directly with some giheress code as illus-
trated in Figure 48.

The bottom lineis that dealing with irprocess or remote objects is transparent and identical to dealing with
in-process objectsThis location transparency has a number of key benefits:

1 A common solution to problems that are independent of the distance between client and serveor
example, connection, function invocation, interface negotiation, feature evolution, and so forth.

1 Programmers leverage their learning New services are simpexposed through new interfaces, and once
programmers learn how to deal with interfaces, they already know how to deal with new services that will
be created in the future. This is a great improvement over environments where each service is exposed in a
completely different fashion.

1 Systems implementation is centralizedThe implementors of COM can focus on making the central pro-
cess of providing this transparency as efficient and powerful as possible such that every piece of code that
uses COM benefitsnmensely.

1 Interface designers focus on desigrin designing a suite of interfaces, the designers can spend their time
in the essence of the des@nhe contracts between the parfiewithout having to think about the underly-
ing communication mechanisnfsr any interoperability scenario. COM provides those mechanisms for free
and transparently.

DRAFT: October 24,1995 Page:25 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

Client Process
L Local Server Process

| In:Process | e

| Object

 cClent
. Application

RPC . Local server |

Remote Machine

| Rembote
S object
Proxy i

Remote Server Process

RPC

Remote Server

Figure 1-8: Clients always call inprocess code; objects are always called by-jprocess
code. COM provides the underlying transparent RPC.

The clear separation of interface from implementation provided by locatiospaieency for some situations gets in
the way when performance is of critical concern. When designing an interface while focusing on making it natural

and functional from the clientds point of vi owwithone i
allowing for efficient implementation of that interface across a network. What is needed is not pure location trans-
parency, but Al ocation transparency, unl ess you need t

can if he wishesupportcustom marshalingvhich allows his objects to take special action when they are used from
across the network, different action if he would like than is used in the local case. The key point is that this is done
completely transparently to the cliermaken as a whole, this architecture allows one to design client / object inter-
faces at their natural and easy semantic level without regard to network performance issues, then at a later address
network performance issues without disrupting the estaddisiesigr?.

Also note again that COM is not a specification for how applications are structured: it is a specification for how
applications interopate. For this reason, COM is not concerned with the internal structure of an appfcttatns

the job of programming languages and development environments. Conversely, programming environments have no
set standards for working with objects outsideraf tmmediate application. C++, for example, works extremely well

to work with objects inside an application, but has no support for working with objects outside the application. Gen-
erally all other programming languages are the same in this regard. Tiee@@M, through languagmdependent
interfaces, picks up where programming languages leave off to provide the netwierknteroperability.

6 The COM Library

It should be clear by this time that COM itself involves some sysier® code, that is, some implementation of its

own. However, at the core the Component Object&bdd by itself i s a specification
and their clients interact through the binary standard of interfaces. As a specification it defines a number of other
standards for interoperability:

1 The fundamental process of interfaceagation throughQuerylinterface.

1 A reference countingnechanism through objects (and their resources) are managed even when connected to
multiple clients.

9 Not only are there situations where there is a need for designs optimized for cross network efficiency, but there aes albe reaiprocess
efficiency is more important. Just as COM provides mechanisms whereby the remote caseptamibed (custom marshaling) it also al-
lows for the design of interfaces that are optimized for theracess case.

Copyright ©199295 Microsoft Corporation Page:26 DRAFT: October 24,1995
All Rights Reserved

(

The Component Object Model The Component Object Model Specification

1 Rules for memory allocation and responsibility for those allocations when exchanged betwgssndtatdly
developed components.

I Consistent and rich error reporting facilities.

I n addition to being a specification, COM is al so an
The implementation is provided through a library (such as b & Microsoft Windows) that includes:

1 A small number of fundamental API functions that facilitate the creation of COM applications, both clients and
servers. For clients, COM supplies basic object creation functions; for servers the facilities te #vgosb-
jects.

1 Implementation locator services through which COM determines from a class identifier which server imple-
ments that class and where that server is located. This includes support for a level of indirection, usually a sys-
tem registry, betweethe identity of an object class and the packaging of the implementation such that clients
are independent of the packaging which can change in the future.

1 Transparent remote procedure calls when an object is running in a local or remote server, as illustrated in Figure
1-8 in the previous section.
1 A standard mechanism to allow an application to control how memory is allocated within its process.

In general only one vendor needs to, or should, implement a COM Library for any particular operating system. For
example, Microsoft has implemented COM on Microsoft Windows 3.1, Microsoft Windows 95, Microsoft Windows
NT, and the Apple Macintosh. Part V of thisadonent specifies in detail the internals of the COM Library for
those vendors who wish to implement the COM Library on a platform for which it does not already have support.

7 COM as a Foundation

The binary standard of interfaces is the key to COMOGs
is built the resbf COM and other systems such as OLE.

.1 COM Infrastructure

COM provides more than just the fundamental object creatimh management facilities: it also builds an infra-
structure of three other core operating system components.

Persistent Storage A set of interfaces and an implementation of those interfaces that create structured storage, oth-

erwise known astainfial disesdemnformation in a file is
bles sharing storage between processes, incremental access to information, transactioning support, and the ability for
any code in the system to browse the elementedfor mat i on in the file. I n additi

St

on

tent storageodo interfaces that objects i mpl ement to supp

persistent, storage devices such that the state of the object candredes a later time.

Persistent, Intelligent Names (Monikers) The ability to give a specifimstantiationof an object a particular name

that would allow a client to reconnect to tleatact same object instance with the same taie just another obpt

of the same class) at a later time. This also includes the ability to assign a name to somepsgretimh such as a

query, that could be repeatedly executed using only that name to refer to the operation. This level of indirection al-
lows changesat happen behind the name without requiring any changes to the client that stores that particular name.
This technology is centered around a type of object calledrikerand COM defines a set of interfaces that moni-

ker objects implement. COM also defin@standardcomposite monikdhat is used to create complex names that are
built of simpler monikers. Monikers also implement one of the persistent storage interfaces meaning that they know

how to save their name or other information to somewhere permanenMoni kers are fAintelligen

how to take the name information and somehow relocate the specific object or perform an operation to which that
name referd?®

Uniform Data Transfer: Standard interfaces through which data is exchanged between a client and an object and
through which a client can ask an object to send notification (call event functions in the client) in cagataf

change. The standards include powerful structures used to describe data formats as well as the storage mediums on
which the data is exchanged.

The combination of the foundation and the infrastructure COM components reveals a system that deseribes ho
create and communicate with objects, how to store them, how to label to them, and how to exchange data with them.

YMonikers are COMo6és way of provi di nQORSBA)patl persistenfimterfaceshat ot her obj ect

DRAFT: October 24,1995 Page:27 Copyright © 199295 Microsoft Corporation
All Rights Reserved

sy

The Component Object Model Specification The Component Object Model

These four aspects of COM form the core of information management. Furthermore, the infrastructure components
not only build on the fouration, but monikers and uniform data transfer also build on storage as shown in Figure
1-9. The result is a system that is not only very rich, but also deep, which means that work done in an application to
implement lower level features is leveraged tddbhiigher level features.

Figure 1-9: COM is built in progressively higher level technologies that
depend upon lower level technologies.

.2 OLE

Mi crosoftds OLE technol ogy i s -leve tethholpogies that bulld upontCOM and o f a d
its infrastructure. OLE version 2.0 was the firsptbyment of a subset of this COM specification that included sup-

port for inprocess and local objects and all the infrastructure technologies but did not support remote objects. OLE 2
includes mostly useinterface oriented features based on usabilityliagtion integration, and automation of tasks.

All of these features are implemented by means of specific interfaces on different objects and defined sequences of
operation in both clients and servers and their relationships and dependencies on thevewmifrastructure of

COM is shown in Figure-10.

Compound
Documents

OLE

com

Figure 1-10: OLE builds its features on COM.

Drag & Drop: The ability to exchange data by picking up a selection with the mouse and visibly dropping it onto
another window.

Automation: The ability to create fAprogrammabl edo application
in another application tautomate common end user tasks. Automation enables-appdisation macro program-

ming.

Compound Documents The ability to embed or link informatioin a central document encouraging a more docu-
mentcentric user interface. Also includesil ace Acti vation (also called #AVisual

Copyright ©199295 Microsoft Corporation Page:28 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

provement to embedding where the end user can works on information from different ap@i¢atibe context of
the compound document without having to switch to other windows.

Microsoft in cooperation with other vendors is continuing to enhance OLE with new interfaces to extend compound
documents and to define architectures for creating compgsrseich as OLE Controls, OLE DB, OLE for Design &
Modeling, OLE for Healthcare, and in the future more systewel OLE architectures that build not only on the
COM infrastructure but also on the rest of OLE as well. Again, the key is leveraged workplgmenting lower

level features in an application you create a strong base of reusable code for higher level features.

DRAFT: October 24,1995 Page:29 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

This page left intentionally blan

Copyright ©199295 Microsoft Corporation Page:30 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

Part Il: Component Object Model Programming Interface

Part Il contains the programming interface to COM, the suite of interfaces and APIs by which Component Object
Model software is implemented and used.

DRAFT: October 24,1995 Page:31 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

This page intentionally left blan

Copyright ©199295 Microsoft Corporation Page:32 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

2. Component Object Model Technical Overview

Chapter 1 introduced some important challenges and problems in computing today and the Component Object Model
as a shution to these problems. Chapter 1 introduced interfaces, mentioned the base interfaceealded, and
described how interfaces are generally used to communicate between an object and a client of that object, and ex-
plained the role that COM has inathcommunication to provide location transparency.

Yet there are plenty of topics that have not been covered in much technical detail, specifically, how certain mecha-
nisms work, some of the interfaces involved, and how some of these interfaces are ad@dtolevel. This chapter

will describe COM in a more technical light but not going as far as describing individual interface functions or COM
Library API functions. Instead, this chapter will refer to later chapters in the COM Specification that cowves va
topics in complete detail including the specifications for functions and interfaces themselves.

This chapter is generally organized in the same order as Chapter 1 and covers the following topics which are then
treated in corplete detail in the indicated chapters:

1 Objects and Interfaces: A comparison of interfaces to C++ classesuik®wn interface (including the
Querylinterface function and reference counting), the structure of an instantiated interface and the lodribéts
structure, and how clients of objects deal with interfaces. Chapter 3 covers the underlying interfaces and API
functions themselves.

1 COM Applications: The responsibilities of all applications making use of COM which includes rules for
memory maagement. How applications meet these responsibilities is covered in Chapter 4.

T COM Clients and Servers: The roles and responsibilities of each specific type of application, the use of class
identifiers, and the COM L i ban.aChgpiers5 amdobltreat COM Chients and d i n g
Servers separately. How COM achieves location transparency is described in Chapter 7.

1 Reusability: A discussion about why implementation inheritance is not used in COM and what mechanisms are
instead available. v an object server is written to handle the COM mechanisms is a topic of Chapter 6.

1 Connectable Objects: A brief overview of the connection point interfaces and semantics. The actual functional
specification of connectable objects is in Chapter 9.

1 Pesistent Storage: A detailed look at what persistent storage is, what benefits it holds for applications including
incremental access and transactioning support, leaving the APIs and interface specifications to Chapter 10.

1 Persistent, Intelligent Name¥/hy it is important to assign names to individual object instantiations (as opposed
to a class identifier for an object class) and the mechanisms for such naming including moniker objects. The in-
terfaces a moniker implements as well as other support furectire described in Chapter 11.

1 Uniform Data Transfer: The separation of transfer protocols from data exchange, improvements to data format
descriptions, the expansion of available exchange mediums (over global memory), and data change notification
mechanisms. New data structures and interfaces specified to support data transfer is given in Chapter 12.

1 Objects and Interfaces

Chapter 1 described that interfacesdatrongly typed semantic contracts between client and dbject that an

object in COM is any structure that exposes its functionality through the interface mmuohén addition, Chapter 1

noted how interfaces follow a binary standard and how such a standard enables clients and objects to interoperate
regardless of the programming languages used to implement them. Whilgptha an interface is by colloquial
convention referred to with a name starting with an
sourcelevel programming tools. Each interface itéethe immutable contract, thatdsas a functional group is

referred to at runtime with a globglu ni que i nterface identifier, an Al 1l DO ¢t}
supports the semantics of the interface without unnecessary overhead and without versioning problems. Clients ask
questions using Queryinterface function that all objed support through the base interfataknown.

Furthermore, clients always deal with objects through interface pointers and never directly access the object itself.
Therefore an interface is not an object, and an object can, in fact, have more thatedaeeinf it has more than
one group of functionality it supports.

Letdés now turn to how interfaces mani fest themsel ves and

=13

DRAFT: October 24,1995 Page:33 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

.1 Interfaces and C++ Classes

As just reiterated, an interface is not an object, nor is it an object class. Given an interface definition by itsglf, that i

the type definition for an i nt er f aaneobjectaofriteat typh. dhisiboaegi ns w
reason why the prefix Ald is used instead of the common
such ascmyclass. While you can instantiate an object of a C++ class, you cannot instantiate an olgedhtefrface

type.

In C++ applications, interfaces are, in fact, definedlstract base classe¥hat is, the interface is a C++ class that

contains nothing but pure virtual member functions. This means that the interface carries no implementatibyn and o
prescribes the function signatures for some other class to implén@&nt compilers will generate compitéme

errors for code that attempts to instantiate an abstract base class. C++ applications implement COM objects by inher-

iting these function sigrtares from one or more interfaces, overriding each interface function, and providing an

i mpl ement ation of each function. This is how a C++ COM a

Implementing objects and interfaces in other languages idasiini nature, depending on the language. In C, for
example, an interface is a structure containing a pointer to a table of function pointers, one for each method in the
interface. It is very straightforward to use or to implement a COM object in C, eethth any programming lan-

guage which supports the notion of function pointers. No special tools or language enhancements are required
(though of course such things may be desirable).

The abstracb ase ¢l ass comparison exp®sesnaaptatdfriibut er fodc & sh:e
plement any single function in an interface, you must provide some implementatieweiyrfunction in that inter-

face. The implementation might be nothing more than a single return statement when the objetttihggado in

that interface function. In most cases there is some meaningful implementation in each function, but the number of
lines of code varies greatly (one line to hundreds, potentially).

A particular object will provide implementations for the fiions in every interface that it supports. Objects which

have the same set of interfaces and the same implementations for each are often said (loosely) to be instances of the
same class because they generally implement those interfaces in a certainowayeH all access to the instances

of the class by clients will only be through interfaces; clients know nothing about an object other than it supports
certain interfaces. As a result, classes play a much less significant role in COM than they do abjetitesriented

systems.

COM uses the word fAinterfaceodo in a s-eriended pragramrirgrusingt from
C++. I n the C++ contadlthe functidris that e cldsasopparts ahd that cliénts ef an algact

call to interact with it. A COM interface refers to a mtefined group of related functions that a COM class imple-

ments, but does not necessarily represditt he f unctions that the c¢class supports.
tionality into groups is what enables COM and COM applications to avoid the problems inherent with versioning
traditional altinclusive interfaces.

.2 Interfaces andinheritance

COM separates class hierarchy (or indeed any aothgiementatiortechnology) from interface hierarchy and both of
those from any implemeation hierarchy. Therefore, interface inheritance is only applied to reuse the definition of
the contract associated with the base interface. There is no selective inheritance in COM: if one interface inherits
from another, it includes all the functionisat the other interface defines, for the same reason than an object must
implement all interface functions it inherits.

Inheritance is used sparingly in the COM interfaces. Most of thelefi@ed interfaces inherit directly fromanknown

(to receive theudndamental functions lik@ueryinterface), rather than inheriting from another interface to add more
functionality. Because COM interfaces are inherited figaknown, they tend to be small and distinct from one an-
other. This keeps functionality in sepaaroups that can be independently updated from the other interfaces, and
can be recombined with other interfaces in semantically useful ways.

In addition, interfaces only use single inheritance, never multiple inheritance, to obtain functions fromradrase

face. Providing otherwise would significantly complicate the interface method call sequence, which is just an indirect
function call, and, further, the utility of multiple inheritance is subsumed within the capabilities provided by
Querylnterface.

Copyright ©199295 Microsoft Corporation Page:34 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

.3 Interface Definitions: IDL

When a designerreates an interface, that designer usually defines it using an Interface Description Language (IDL).
From this definition an IDL compiler can generate header files for programming languages such that applications can
use that interface, create proxy andbsbbjects to provide for remote procedure calls, and output necessary to enable
RPC calls across a network.

I DL is simply a tool (one of possibly many) for the conv

interoperability. It really yst saves the designer from manually creating many header files for each programming
environment and from creating proxy and stub objects by hand, which would not likely be a fun task.

Chapter 13 describes the Microsoft Interface Description Languagetail.dén addition, Chapter 14 covers Type
Libraries which are the machine readable form of IDL, used by tools and other components at runtime.

.4 Basic Operations: ThéUnknown Interface
All objects in COM, through any interface, allow clients access to two basic operations:
1 Navigating between multiple interfaces on an object througlptieg/interface function.

T Controlling the objectds | ifet i hemdled with duocons calleddderef e r e n c e
andRelease.

Both of these operations as well as the three functions (and only these three) makeuugnéhe interface from
which all other interfaces inherit. That is, all interfaces are polymorphic witknown so they all contain
Querylnterface, AddRef, andRelease functions.

.1 Navigating Multiple Interfaces: the QuerylnterfaceFunction

As described in Chapter Queryinterface is the mechanism by which a client, having obtained one interface pointer

on a particular object, can request additional pointersther interfaces on that same object. An input parameter to
Querylnterface is the interface identifier (1ID) of the interface being requested. If the object supports this interface, it
returns that interface on itself through an accompanying output parameter typed as a generic void; if not, the object
returns an error.

In effect, whatQueryinterface accomplishes is a switch between contracts on the object. A given interface embodies

the interaction that a certain contract requires. Interfaces are groups of functions because contracts in practice invar-
iably require more than onsupporting functionQueryinterface s e par at es t he request iDo you
tract ?0 f-pefonmande ese bfithgathcontract once negotiations have been successful. Thus, the (minimal)

cost of the contract negotiation is amortized overdhlesequent use of the contract.

ConverselyQueryinterface provides a robust and reliable way for a component to indicate that in fachdomgport

a given contract. That is, if usingueryintefaceo ne asks an Aol do obj| ednterfaseh(ene,her it
say, that was invented after the old object has been shipped), then the old object will reliably and robustly answer
fino; 0 the technology which supports this is the algorit/

small pant, it is excruciatingly important to the overall architecture of the system, and this capability to robustly
inquire of old things about new functionality is, surprisingly, a feature not present in most other object architectures.

The strengths and beritsfof theQueryinterface mechanism need not be reiterated here further, but there is one press-
ing issue: how does a client obtain its first interface pointer to an object? That question is of central interest to COM
applications but has no one answer. fEnare, in fact, four methods through which a client obtains its first interface
pointer to a given object:

1 Call a COM Library API function that creates an object of agetermined typé that is, the function will only
return a pointer to one specificterface for a specific object class.

1 Call a COM Library API function that can create an object based on a class identifier and that returns any type
interface pointer requested.

1 Call a member function of some interface that creates another objexn(oects to an existing one) and returns
an interface pointer on that separate objéct.

1 Implement an object with an interface through which other dbjpass their interface pointer to the client di-
rectly. This is the case where the client is an object implementor and passes a pointer to its object to another ob-
ject to establish a kdirectional connection.

2 Connecting to objects through an fAintelligent/persistent nameo (moni

DRAFT: October 24,1995 Page:35 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

.2 Reference Counting Controlling Object Life -cycle

Just like an application must free memory it allocated once that memory is no longer in use, a client oftas objec
responsible for freeing the object when that object is no longer needed. In anaigatéd system the client can
only do this by giving the object an instruction to free itself.

However, the difficulty lies in having the object know when it is safe to free itself. COM objects, which are dynami-
cally allocated, must allow the client to decide when the object is no longer in use, especially for local or remote
objects that may be inse by multiple clients at the same tidnthe object must wait untill clients are finished

with it before freeing itself.

COM specifies aeference countingnechanism to provide this control. Each object maintains-hit3&ference

count that tracks hownany clients are connected to it, that is, how many pointers exist to any of its interfaces in any
client. Theuse ofa 3B i t counter (more than four billions clients)
loading the count.

The twolunknown functions of AddRef and Release that all objects must implement control the couxidref incre-

ments the count ankelease decrements it. When the reference count is decremented toRezase is allowed to

free the object because no one else is using it anywhere. Most objects have only one implementation of these func-
tions (along withQueryinterface) that are shared between all interfaces, though this is just a common implementation
approachAr chitecturally, from a clientds per sp éantetfacesmm-, refer
tion.

Whenever a client calls a function that returns a new interface pointer to it, s@chrasterface, the function being

called is responsibléor incrementing the reference count through the returned pointer. For example, when a client
first creates an object it receives back an interface p
reference count of one. If the client lsabueryinterface once for another interface pointer, the reference count is two.

The client must then callelease throughboth pointers (in any order) to decrement the reference count to zero before

the object as a whole can free itself.

In general, evercopy of any pointer to any interface requires a reference count on it. Chapter 3, however, identifies
some important optimizations that can be made to eliminate extra unnecessary overhead with reference counting and
identifies the specific cases in whichllingAddref is absolutely necessary.

.5 How an Interface Works

An instantiationof an interfaceimplementation (because the defined interfaces themselves cannot be instantiated
without implementation) is simply pointer to an array of pointers to functions. Any code that has access to that ar-

rayd a pointer through which it can accebgtarray can call the functions in that interface. In reality, a pointer to

an interface is actually a pointer to a pointer to the table of function pointers. This is an inconvenient way to speak
about interfaces, s o0 t he steastonmefefi o this enultiple in@direcpoo.iContceptudly, i s u s
then, an interface pointer can be viewed simply as a pointer to a function table in which you can call those functions

by dereferencing them by means of the interface pointer as shown in Fidure 2

Copyright ©199295 Microsoft Corporation Page:36 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

——|_pointer

Figure 2-1: An interface pointer is a pointer to a pointer to an array of pointers
to the functions in the interface.
Since these function tables are inconviennijeanttlk wtbdolrésa e ntdh
pushpi nso diagram first shown in Chapter 1 to mean exact]ly

interface Pointer |—~()

i e

Objects with multiple interfaces are merely capable of providing more than one function table. Function tables can
be created marally in a C application or almost automatically with C++ (and other object oriented languages that
support COM). Chapter 3 describes exactly how this is accomplished along with how the implementation of the
interface functions know exactly which objectbising used at any given time.

With appropriate compiler support (which is inherent in C and C++), a client can call an interface function through
the name of the function and not its position in the array. The names of functions and the fact thatae irterf

type allows the compiler to check the types of parameters and return values of each interface function call. In con-
trast, such type&hecking is not available even in C or C++ if a client used a poditased calling scheme.

.6 Interfaces Enable Interoperability

COM is designed around theel of interfaces because interfaces enable interoperability. There are three properties of
interfaces that provide this: polymorphism, encapsulation, and transparent remoting.

.1 Polymorphism

Polymorphismmeans the ability to assume many forms, and in olgeiented programming it describes the ability

to have a single statement invoke different functions at differentstihk COM interfaces are polymorphic; when

you <cal/l a function wusing an interface pointer, you do
pinterface->SomeFunction can cause different code to run depending on what kind of object is the ipmi@mof the

interface pointed byinterfaced while the semantics of the function are always the same, the implementation details

can vary.

Because the interface standard is a binary standard, clients that know how to use a given interface can interact with

any object that supports that interfase matter how the object implements that contragtis allows interoperability

as you can write an application that can cooperate with other applications without you knowing who or what they are
beforehand.

DRAFT: October 24,1995 Page:37 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

.2 Encapsulation

Other advantages of COM arise from its enforcement of encapsulation. If you have implemented an interface, you
can change or update the implementation without affecting any of the clients of your class. Similarly, you are im-
mune to changes that others make in their implementations of their interfaces; if they improve their implementation,
you can benefit from it #whout recompiling your code.

This separation of contract and implementation can also allow you to take advantage of the different implementa-
tions underlying an interface, even though the interface remains the same. Different implementations of the same
interface are interchangeable, so you can choose from multiple implementations depending on the situation.

Interfaces provides extensibility; a class can support new functionality by implementing additional interfaces without
interfering with any ofitsextsi ng cl i ent s. Cisothetnterfacs i uma@ffected if thoelrlpss is tevised to
in addition supportanotherinterface.

.3 Transparent Remoting
COM interfaces allow one application to interact with others anywhere on the network just as if they were on the

same machine. This expands the range of an obhatesupt 6s i nt
ports a given contract, no matter how the object implements that contract, and no matter what machine the object

resides on.

Before COM, class code such as C++ class libraries ran in same process, either linked into the executable or as a
dynamiclink library. Now class code can run in a separate process, on the same machine or on a different machine,
and your application can use it with no special code. COM can intercept calls to interfaces through the function table
and generate remote proceduréscinstead.

2 COM Application Responsibilities

Each process that uses COM in any @agtient, server, object implementbris responsible for three things:

1. Verify that the COM Library is a compatible version with the COM functieBuildversion.

2. Initialize the COM Library before using gother functions in it by calling the COM functi@vlnitialize.

3. Un-initialize the COM Library when it is no longer in use by calling the COM functiooninitialize.

While these responsibilities and functions are covered in detail in Chapter 4jrsbtadt most COM Library func-

tions, primarily those that deal with the COM foundati or
Library may i mpl ement other functions to supporcod persis
prefix.

.1 Memory Management Rules

In COM there are many interface member functions and APIs which are called by dtida iy one programming
organization and implemented by code written by another. Many of the parameters and return values of these func-
tions are of types that can be passed around by value; however, sometimes there arises the need to pass data struc-
turesfor which this is not the case, and for which it is therefore necessary that the caller and the callee agree as to the
allocation and dallocation policy. This could in theory be decided and documented on an individual function by
function basis, but its much more reasonable to adopt a universal convention for dealing with these parameters.
Also, having a clear convention is important technically in order that the COM remote procedure call implementation
can correctly manage memory.

Memory management gfointers to interfaces is always provided by member functions in the interface in question.
For all the COM interfaces these are #uwiRef and Release functions found in theunknown interface, from which
again all other COM interfaces derive (as described earlier in this chapter). This section relates onlyytwvalae
parameters which aneot pointers to interfaces but are instead more mundane things like strings, pointergto stru
tures, etc.

The COM Library provides an implementation of a memory allocator ¢seetMalloc and CoTaskMemAlloc). When-
ever ownership of an allocated chunk of memory is passed through a COM interface or between andlithe
COM library, this allocator must be used to allocate the meriory.

12 Any internallyused memory in COM and-process objects can use any allocation scheme desired, but the COM memory allocator is a handy,
efficient, and threadafe allocator.
Copyright ©199295 Microsoft Corporation Page:38 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

Each parameter to and the return value of a function can be classified into one of three grongmrameter, an
out parameter (which includes return values), orirout parameter. In each class of parameter, the responsibility
for allocating and freiag nonby-value parameters is the following:

in parameter Allocated and freed by the caller.
out parameter Allocated by the callee; freed by the caller.

in-out parameter Initially allocatedby the caller, then freed and-alocated by the callee if nec-
essary. As with out parameters, the caller is responsible for freeing the final re-
turned value.

In the latter two cases there is one piece of code that allocates the memory and a diffeecoft giele that frees it.

In order for this to be successful, the two pieces of code must of course have knowledge of which memory allocator
is being used. Again, it is often the case that the two pieces of code are written by independent development organi-
zations. To make this work, we require that the COM allocator be used.

Further, the treatment of out and-amt parameters in failure conditions needs special attention. If a function returns
a status code which is a failure code, then in general the talkeno way to clean up thait or in-out parameters.
This leads to a few additional rules:

out parameter In error returns, out parameters mustabwaysreliably set to a value which will
be cleaned up without any agstheicassmthabn t he <cal
all out pointer parameters (usually passed in a potatgointer parameter, but
which can also be passed as a member of a ealllerate calledill structure)
mustexplicitly be set to NULL. The most straightforward way to ensureithis
(in part) to set these values to NULL on function erfry.

(On success returns, the semantics of the function of course determiagahe
return values.)

in-out parameter In error returns, all irout parameters must either be left alone by the callee (and
thus remaining at the value to which it was initialized by the caller; if the caller
didnodét initialize erhotanindueparanieterpa beer- out par a
plicitly set as in the out parameter error return case.

The specific COM APIs and interfaces that apply to memory management are discussed further below.

Remember that these memory management conventions for COM ajoplgcapply only across public interfaces
and API$ there is no requirement at all that memory allocation strictly internal to a COM application need be done
using these mechanisms.

3 The COM Client/Server Model

Chapter 1 mentioned how COM supports a model of client/server interaction beaweans er of an obj ect €
the client, and the implementor of that object and its services, the server. To be more precise, theaolygiede

of code (not necessarily an application) that somehow obtains a pointer through which it can &csessdés of an

object and then invokes those services when necessary. The server is some piece of code that implements the object
and structures in such a way that the COM Library can match that implementation to a class identifier, or CLSID.

The involvement of a class identifier is what differentiates a server from a more general object implementor.

The COM Library uses the CLSID to provide Ai mpl ementat.
COM the CLSID it wants and the type of serden-process, local, or remadethat it allows COM to load or

launch. COM, in turn, locates the implementation of that class and establishes a connection between it and the client.
This relationship between client, COM, and server is illustrated in Figi2rer2the next page.

Chapter 1 also introduced the idea of Location transparency, where clients and servers never need to know how far
apart they actually are, that is, whether they are in the same process, different processes, or different machines.

This sction now takes a closer look at the mechanisms in COM that make this transparency work as well as the
responsibilities of client and server applications.

13 This rule is stronger than it might seem to need to be in order to promote more robust application interoperability.

DRAFT: October 24,1995 Page:39 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

\

(4) Call interface I

members . 1

») ject |

1

1

B—

| !

(3) Get object Server l
interface iointer,

return to Client \II—J

(2) Locate
implementation

OM

—_—
Figure 2-2: Clients locate and access objects through implemerntan locator
services in COM. COM then connects the client to the object in a server. Compare

this with Figure 1-2 in Chapter 1.

.1 COM Objects and Class Identifiers

A COM class is a particular implementation of certain interfaces; the implementation consists of machiteatod

is executed whenever you interact with an instance of the COM class. COM is designed to allow a class to be used

by different applications, including applications writt
Therefore class codeists either in a dynamic linked librarpi(L) or in another application (EXE). COM specifies a
mechanism by which the class code can be used by many different applications.

A COM object is an object that is identified by a unique-b28cLsID that asso@tes an object class with a particu-
lar DLL or EXE in the file system. ACLSID is aGuUID itself (like an interface identifier), so no other class, no matter
what vendor writes it, has a duplicatesiD. Servers implementors generally obtairsiDs through thecoCreateGUID
function in COM, or through a COMnabled tool that internally calls this function.

The use of uniqueLsiDs avoids the possibility of name collisions among classes beazaisses are in no way con-
nected to the names used in thelarlying implementation. So, for example, two different vendors can write classes
which they calli st a ¢ k butaeaeh will have a uniqueLsiD and therefore avoid any possibility of a collision.

Further, no central authoritative and bureaucratic badyeieded to allocate or assignsiDs. Thus, server imple-
mentors across the world can independently develop and deploy their software without fear of accidental collision
with software written by others.

On its host system, COM maintains a registratioradata se (or fi r e gLsims for tyeds@rvers nstaded | t he
on the system, that is, a mapping between eachp and the location of theLL or EXE that houses the server for

that cLsID. COM consults this database whenever a client wants to credtstance of a COM class and use its
services. That client, however, only needs to knowdb&D which keeps it independent of the specific location of

theDLL or EXE on the particular machine.

If a requestedcLsID is not found in the local registratiorathbase, various other administrativelyntrolled algo-
rithms are available by which the implementation is attempted to be located on the network to which the local ma-
chine may be attached; these are explained in more detail below.

Given acLsip, COM invokes a part of itself called the Service Control Manager (ST Mhich is the system ele-
ment that locates the code for tlatsiD. The code may exist asmL or EXE on the same machine or on another
machine: thescMm isolates most of COM, as well as all applications, from the specific actions necessary to locate

code. We 61 | r et u saMm inaa mdmesta@ifies examining tbefroles bf¢he client and server applica-
tions.
.2 COM Clients

Whatever application passescasiD to COM and asks for an instantiated object in return is a COM Client. Of
course, since this client use®®!, it is also a COM application that must perform the required steps described above
and in subsequent chapters.

“Colloquially, of course, pronounced fAscum. 0O

Copyright ©199295 Microsoft Corporation Page:40 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

Regardless of the type of server in usefincess, local, or remote), a COM Client always asks COM to instantiate

objects in exactly the sammanner. The simplest method for creating one object is to call the COM function
CoCreatelnstance. This creates one object of the givensiD and returns an interface pointer of whatever type the

client requests. Alternately, the client can obtain anrinftea ce point er to what is called t
CLSID by callingcoGetClassObject. This class factory supports an interface call@dssFactory through which the

client asks that factory to manufacture an object of its class. At that f@rclient has interface pointers favo

separate objects t he ¢l ass factory and an object of that <c¢l ass,
portant distinction that is illustrated in Figure32and clarified further in Chapter 5.

erv

£

|

i (1) fACrea
an Object

| er =&

8

\

\.
|

/ (3) Return new

L interface pointer

to client
e N

(2) Manufacture
Object

@) ¢

J

Figure 2-3: A COM Client creates objects through a class factory.

The CoCreatelnstance function internally callSCoGetClassObjecti t s e | f . ltds just a more conyve
that want to create one object.

The ottom line is that a COM Client, in addition to its responsibilities as a COM application, is responsible to use

COM to obtain a class factory, ask that factory to creat
t he c | as Reedsaafunctionrwipen she client is finished with it. These steps are the bulk of Chapter 5 which

also explains some features of COM that allow clients to manage when servers are loaded and unloaded to optimize
performance.

.3 COM Servers

There are two basic kinds of object servers:

1 Dynamic Link Library (DLL) Based: The server is implemented in a module that can be loaded into, and will
execute within, a clientds address space. (The term I
brary mechanism that is present on a given COM platform.)

1 EXE Based:The server is implemented as a statdne executable module.

Since COM allows for distributed objects, it also allows for the two basic kinds of servers to implemented on a re-
mote machine. To allow client applications to activate remote objects, COM defines the Service Control Manager
(SCM) whose role is describegéd ow under fAThe COM Library.o

As a client is responsible for using a class factory and for server management, a server is responsible for implement-
ing the class factory, implementing the class of objects that the factory manufactures, exposing thetotgs® fa

COM, and providing for unloading the server under the right conditions. A diagram illustrating what exists inside a
server modulegXE or DLL) is shown in Figure 2.

DRAFT: October 24,1995 Page:41 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification

Object Interfaces Q

The Component Object Model

Implementation

(as many as desired) () Je identical for any
. module.
—
IClassFactor Class Factory
Y O creates Object
L \
Exposure for .
lass factory = Implementation
differs for DLLs
Unloading & and EXEs.
mechanis

Server Module

Figure 2-4: The general structure of a COM ®rver.

How a server accomplishes these requirements depends on whether the server is implememtedrasxa, but is
independent of whether the server is on the same machine as the client or on a remote machine. That is, remote serv-
ers are the same &xcal servers but have been registered to be visible to remote clients. Chapter 6 goes into all the
necessary details about these implementations as well as how the server publishes its existence to COM in the regis-

tration database.
A special kind ofserve i s cal |

the client can cont

ed an DBDcusvtodomwobkect nhawmadaljenction wit
a partial inprocess implementation of an object cldsSince inprocess code is nornialmuch faster to load,

in-process calls are extremely fast, and certain resources can be shared only within a single process space, handlers
can help improve performance of general object operations as well as the quality of operations such asAprinting.

object handler is architecturally similar to arpgnocess server but with more specialized semantics for its use. While

l oading

r ol t he

The existencefoa handler changes nothing for clients.

.4 The COM Library and Service Control Manager

As described in Chapter 1, the COMNbrary itself is the implementation of the standard API functions defined in
COM along with support for communicating between objects and clients. The COM Library is then the underlying

Apl umbingd that makes

of handl er s, it does

everyt hi hogn iwBigute 25t(thimthesspneerfiguretas vy t hr

Figure 18 in Chapter 1, repeated here for convenience). Whenever COM determines that it has to establish commu-
a | ocal 0 fprocess abjetteto tkee r ver |,

nication between a
client. These proxi

client
es then

and
t al

k to

Astubo objects that

rectly. The stubs pick up RPC calls from the proxies, turn them into function calls to the real object, then pass the
return values back to the proxy via RPC which in turn returns them to the ¥li€he underlying emote procedure
call mechanism is based on the standard DCE remote procedure call mechanism.

BStrictly speaking, the

Aihandl ero

isssdepl ynt heerepresctdbsaproeesst

the remote connection. There is tralwaysa handler present when remoting is being done, though very often the handler is a trivial one which
merely forwards al/l ciag |l syndmy mdhuwag

dl ero tends to be used -tnmoirvei awh ehna ntdhleerre,

“Readers more familiar
are analogous.

Copyright ©199295 Microsoft Corporation
All Rights Reserved

with RPC

Page:42

t han

wietnts et hdi haendmhe rdproxy objectod or

wi t h

COM wi || rec othenphrases ficl i ent

DRAFT: October 24,1995

r

C

and

ivei tihn Afparcotx yab nuosnual 'y used wh

The Component Object Model

Client Process

L e
”Appiéiicatgioni

Remote

‘ll‘l-l‘:’l’:(;)C‘ESS‘ :
| Object

Object
Proxy

RPC

RPC

The Component Object Model Specification

Local Server Process

. Localserver

Remote Machine

Remote Server Process

‘Remote Server

Figure 2-5: COM provides transparent access to local and remote servers
through proxy and stub objects.

.5 Architecture for Distributed Objects

The COM architecture for object distribution is similar to the remoting architecture. When a cliesttovamnnect
to a server object, the name of the server is stored in the system registry. With distributed objects, the server can
implemented as an dprocess DLL, a local executable, or as executable or DLL running remotely. A component
called the Servie Control Manager (SCM) is responsible for locating the server and running it. The next section,

AiThe
tion

Ser vi
for it

ce Control

6s interfa

Manager 0,

ces.

explains the rol

e of

t

Making a call to arinterface method in a remote object involves the cooperation of several components. The inter-
ent o

face proxy is a piece of interffacep e c i f i

c code

t hat resides in th

e cl

parameters for transmittal. It packagespmarshals, them in such a way that they can be recreated and understood in

the receiving process. The interface stub, also a piece of intesfpce c i f i ¢

code, resi

des

and reverses the work of the proxy. The stub unpackagesymarshals, the sent parameters and forwards them on
to the server. It also packages reply information to send back to the client.

The actual transmitting of the data across the network is handled by the RPC runtime library and the channel, part of
the CQM library. The channel works transparently with different channel types and supports both single and mul-

ti-threaded applications.

The flow of communication between the components involved in interface remoting is shown in F&u@n2he

clientsideoft he process

boundary,

the c¢clientds method

cal

n

he

t h

goe

that the channel is part of the COM library. The channel sends the buffer containing the marshaled parameters to the
RPC runtime library who transmitsdicross the process boundary. The RPC runtime and the COM libraries exist on

both sides of the process.

DRAFT: October 24,1995

Page:43

Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

Process
(i T Boundary T
! Clie f Object
' /
[Proxy Stub |
¥
Channel [_hanne]
COM Library COM Librar A
[rRPC Runtime | RPC Runtime]

kT;] :
l Transport ll »| Transport l

Figure 2-6 . Components of COM6és distributed archit

.6 The Service Control Manager

The Service Control Manager ensures that when a client request is made, the appropriate server is connected and
ready to receive the request. The SGbkps a database of class information based on the system registry that the
client caches locally through the COM |library. This is t
in Figure 27.

When a client makes a request to create an blojea cLSID, the COM Library contacts the local SCM (the one on
the same machine) and requests that the appropriate server be located or launched, and a class factory returned to the
COM Library. After that, the COM Library, or the client, can ask the<l&actory to create an object.

The actions taken by the local SCM depend on the type of object server that is registeredifemthe

In-Process The SCM returns the file path of the DLL containing the object server imple-
mentation. The COM library thewdds the DLL and asks it for its class factory
interface pointer.

Local The SCM starts the local executable which registers a class factory on startup.
That pointer is then available to COM.

Remote The local SCM contacts the SCM running on the appropreateote machine
and forwards the request to the remote SCM. The remote SCM launches the
server which registers a class factory like the local server with COM on that re-
mote machine. The remote SCM then maintains a connection to that class factory
and returs an RPC connection to the local SCM which corresponds to that re-
mote class factory. The local SCM then returns that connection to COM which
creates a class factory proxy which will internally forward requests to the remote
SCM via the RPC connection arfuuts on to the remote server.

Copyright ©199295 Microsoft Corporation Page:44 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

) (1) Client:
] ACrea
1an

 Client
Application

RPC Connection
to Local Server

iLocal

(4) COM: - Object
iHer e 63

Launch application

Locates,
runs servers,
(3) nfAHery
Connec

P Os your
ono

e
(gb;ec‘t Ask remote SCM
L Broxy.

to launch application

RPC Connection
to Remote Server

ERémgté :
[Objectiiii
O oject;

Figure 2-7: COM delegates responsibility of loading and launching servers to the SCM.

Note that if the remote SCM determines that the remote server is actualbpan mc e ss ser ver, it |l au
gat e 0 s thendoads that peotess server. The surrogate does nothing more than pass all requests on through
to the loaded DLL.

.7 Application Security

The technology in COM provides security for applications, regardless of whether they run remotely. There is a de-
fault level of security that is provided to n@ecurityaware applications such as existing OLE applicationsoBey

the default, applications that are secwatyare can control who is granted access to their services and the type of
access that is granted.

Default security insures that sgsh integrity is maintained. When multiple users require the services of a single
nornrsecurityaware server, a separate instance for each user is run. Each client/server connection remains independ-

ent from the others, preventing clients from accessing eatcth e r s 6 d-setudtyawakd skrvers are run as the
security principal who caused them to run. An exampl e in
in Figure 28. Since two of the clients are the same user (User2), onedaestd server X can service both clients.

The technology used in COM for distribution implements this security system with the authentication services pro-
vided by RPC. These services are accessed by applications through the COM library when a call tie made
Colnitialize. This security system imposes a restriction on where semurityaware applications can run. Since the
system cannot start a session on another machine without the proper credentials, all servers that run in the client
security context namally run where their client is running. Theits attrib- Clients Server

ute associated with that class controls where a server is run.

Securityaware servers are those applications that do not allow global ad Client1
to their services. These servers may run either whereltdet is running, (__(User 1)

where their data is stored, or elsewhere depending on a rich set of activation
rules. Rather than running as one of their clients; secasitgre servers arg|
themselves security principals. Secwéware servers may participate i
two-way authentication whereby clients can ask for verification. Securi-
ty-aware servers can use the services offered by the RPC security pr{l Client 3
er(s) or supply their own security implementation. - (User 2

Started By
. Userz

4 Object Reusability . Sdileaby

User3d

An important goal of any object model is that component authamsreuse ~_. ;
) . . . F}%ure 2-8. A non-security-aware
and extend objects provided by others as pieces of their own compone server

DRAFT: October 24,1995 Page:45 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

implementations. Implementation inheritance is one way this can be achieved: to reuse code in the process of build-
ing a new object, you inherit implementation from it and oiderrmethods in the tradition of C++ and other lan-
guages. However, as a result of many years experience, many people believe traditional 1atye @gplementa-

tion inheritance technology as the basis for object reuse is simply not robust enough foelatgeng systems
composed of software components. (See d&Br more information.) For this reason COM introduces other reus-
ability mechanisms.

.1 COM Reusability Mechanisms

The key point to building reusable components is blagk reuse which means the piece of code attempting to reuse

another component knows nothing, aiaes not need to know anything, about the internal structure or implementa-
tion of the component being used. In other words, the code attempting to reuse a component dependsepon the
havior of the component and not the exauoplementation

To achieve ckbox reusability, COM supports two mechanisms through which one object may reuse another. For
convenience, the object being reused is called the #Ainne
Afouter object. o

1. Containment/Delegaton: the outer object behaves like an object client to the inner object. The

outer object ficontainsodo the inner object and when |
inner object the outer object simply delegates implementation to the inreecobjé s i nt er f aces. I
other words, the outer object uses the innerds ser)

the outer and inner objects support the same interfaces; in fact, the outer object may use an inner
object 6s i nt e rentgparts of diffeferd intprfade wrpthe @uter object especially
when the complexity of the interfaces differs greatly.

2. Aggregation: the outer object wishes to expose interfaces from the inner object as if they were im-
plemented on the outer object itfs@his is useful when the outer object would always delegate
every call to one of its interfaces to the same interface of the inner object. Aggregation is a con-
venience to allow the outer object to avoid extra implementation overhead in such cases.

Thesetwo mechanisms are illustrated in Figure9 2nd 210. The important part to both these mechanisms is how
the outer object appears to its clients. As far as the clients are concerned, both objects implement iht& faces

C. Furthermore, the cliertteats the outer object as a black box, and thus does not care, nor does it need to care,
about the internal structure of the outer obdettie client only cares about behavior.

Containment is simple to implement for an outer object: during its creatienputer object creates whatever inner
objects it needs to use as any other client would. This is nothing tleg process is like a C++ object that itself
contains a C++ string object that it uses to perform certain string functions even if the outéisobjgconsidered a
fistringd object in its own right.
IlUnknown knows
A,B,and C

Q

External . ‘
Interfaces Out bjec
A O nknown |
uter Object uses PO Inher I

I nne Objectos ect lifetime
B) implementation \ !
7 as any client. T |
,,—_——_——_——_——_———_———_———_——;——\ i
. | Inner Object: |
c O ontained inside 1 1
Outer Object l

S

Figure 2-9: Containment of an inner object and delegation to its interfaces.

Aggregation is almost as simple to implement, the primary difference being the impé&timernf the thre@unknown
functions:Queryinterface, AddRef, and Release. The catch is that f r omknown furectiom | i ent 6 s
on the outer object must affect the outer object. ThatdgRef and Release affect the outer object an@ueryinterface

Copyright ©199295 Microsoft Corporation Page:46 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

exposes all the interfaces available on the outer object
interface as it 6 siunenawnmembensadlledithnongh that mterfaseontll behave differently than
thoe lUnknown me mber s on the outer objectbds interfaces, a shee

IUnknown.

The solution is for the outer object to somehow pass the inner objectiseinevn pointer to which the inner object

can reroute (that is, delegat@)nknown calls in its own interfaces, and yet there must be a method through which the
outer object can avekowen fuactiandtat only affecr theanhegr ebjedt. &ivbvides specific
support for this solution as described in Chapter 6.

IUnknown knows

A,B,and C
External \
Interfaces [Outer Obiect \
| 1
A 1 Unknown
& ‘ Inner Object controls Inner
i delegates IUnknown {. bject lifetime |
B calls to Outer Object| |
O— |
O—L . ~Inner Object:
¢ | Inner Obj|e cGoptained inside
‘ C exposed directly Outer Object
from Outer Object —————

Figure 2-10: Aggregation of an inner object where the outer object exposes one or
more of the inner objectbds interfaces as i

5 Connectable Objects and Events

I n the preceding discussions of interfactehBeitnwarsf aampd i
comi ngo. il ncomi ng, 0-0bjne ctth er ecloanttieoxnts hoifp,a ianipildrets t hat
client has to say. In other words, incoming interfaces and their member functions receive input from the outside.
COM al so defines mechanisms where objects can support i
jects to have twavay conversations, so to speak, with clients. When an object supports one or more outgoing in-
terfaces, it is said to beonnectable. One of the most obvious uses for outgoing interfaces is for event notification.

This section describes Connectable Objétts.

A connectable object (also calledsaurc§ can have agnany outgoing interfaces as it likes. Each interface is
composed of distinct member functions, with each function representing a sy, notification, or request.

Events and notifications are equivalent concepts (and interchangeable termsy, aetbeth used to tell the client

that something interesting happened in the object. Events and notifications differ from a request in that the object
expects response from the client. A request, on the other hand, is how an object asks the cligtitraaqndeex-

pects a response.

In all of these cases, there must be some client that listens to what the object has to say and uses that information
wisely. It is the client, therefore, that actually implements these interfaces on objectssoafeedFro m t he si nko6's
perspective, the interfaces are incoming, meaning that the sink listens through them. A connectable object plays the
role of a client as far as the sink is concerned; thus,

An object doesndt -toroeecradasonship with v sirtk.dnvfact, asinglenirestance of an object usual-
ly supports any number of connections to sinks in any number of separate clients. This iso#lieakting® In
addition, any sink can be connected to any number of objects.

Chapter 11 covers the Connectable Object interfa@snctionPoint and IConnectionPointContainer) in complete de-
tail.

17 OLE Controls use the Connectable Objects mechanisms extensively.
18 Note that this usagef the termmulticastingmay differ from what some readers are accustomed to. In some systétitastingis used to
describe a connectieless broadcast. Connectable objects are obviously connection oriented.

DRAFT: October 24,1995 Page:47 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

6 Persistent Storage

As mentioned in Chapter 1, the enhanced COM services define a number of seletee interfaces, collectively

called Persistent Storage or Structured Ster&y definition of the terninterface these interfaces carry no imple-
mentati on. They describe a way to create a Afile system
features for applications including incremental access, transactioanuga sharable medium that can be used for

data exchange or for storing the persistent data of objects that know how to read and write such data themselves. The
following sections deal with the structure of storage and the other features.

.1 A File System Within A File

Years ago, before there were fAdisk operating agiskt ems, 0
drive (or drum) by sending commands directly to the hardware disk controller. Those applications were responsible

for managing the absolute location of the data on the disk, making sure that it was not overwriting data that was
already there. Thisvas not too much of a problem seeing as how most disks were under complete control of a single
application that took over the entire computer.

The advent of computer systems that could run more than one application brought about problems where all the
appi cations had to make sure they did not write over eac
that each adopted a standard of marking the disk sectors that were used and which ones were free. In time, these
standards became ntghe yfsdiesnkd omheérch provided a Afile syste
absolute disk sectors and so forth, applications simply told the file system to write blocks of data to the disk. Fur-
thermore, the file system allowed applications to @eathierarchy of information using directories which could

contain not only files but other sudirectories which in turn contained more files, more-directories, etc.

The file system provided a single level of indirection between applications andsthedd the result was that every
application saw a file as a single contiguous stream of bytes on the disk. Underneath, however, the file system was
storing the file in discontiguous sectors according to some algorithm that optimized read and writéotimach

file. The indirection provided from the file system freed applications from having to care about the absolute position
of data on a storage device.

Today, virtually all system APIs for file input and output provide applications with some wayiti® information

into a flat file that applications see as a single stream of bytes that can grow as large as necessary until the disk is
full. For a long time these APIs have been sufficient for applications to store their persistent information. Applica-
tions have made some incredible innovations in how they deal with a single stream of information to provide features
l'i ke increment al ifasto saves.

However, a major feature of COM is interoperability, the basis for integration between applicatinmegration

brings with it the need to have multiple applications write information to the same file on the underlying file system.
This is exactly the same problem that the computer industry faced years ago when multiple applications began to
share the sameisk drive. The solution then was to create a file system to provide a level of indirection between an
application Afiled and the underlying disk sectors.

Thus, the solution for the integration problem today is another level of indirection: a file sydteéma file. Instead

of requiring that a large contiguous sequence of bytes on the disk be manipulated through a single file handle with a
single seek pointer, COM defines how to treat a single file system entity as a structured collection of two types of
object® storages and streatghat act like directories and files, respectively.

.2 Storage and Stream Objects

Wi t hi ns ReGidMdnt Storage definition there are two types of storage elements: storage objects and stream ob-
jects. These are objects generally implemented by the COM library itself, applications rarely, if ever, need to imple-
ment these storage elements themseléhese objects, like all others in COM, implement interfacgssam for

stream objectsstorage for storage objects as detailed in Chapter 8.

A stream object is the conceptual equivalent of a single disk file as we understand disk files today. Streams are the
basic filesystem component in which data lives, and each strearself has access rights and a single seek pointer.
Through itsIStreaminterface stream can be told to read, write, seek, and perform a few other operations on its un-
derlying data. Streams are named by using a text string and can contain any inteatatestyou desire because

19 This specification recommends that the COM implementation on a given platform (Windows, Macintosh, etc.) includes asstaadard
implementation for use by all applications.
Copyright ©199295 Microsoft Corporation Page:48 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model

they are simply a flat stream of bytes. In addition, the functions inStreaminterface map nearly or@-one with

The Component Object Model Specification

standard filehandle based functions such as those in the ANSI @ima library.

A storage object is the coaptual equivalent of a directory. Each storage, like a directory, can contain any number of
sub-storages (swdirectories) and any number of streams (files). Furthermore, each storage has its own access rights.
The Istorage interface describes the capabids of a storage object such as enumerate elements (dir), move, copy,

rename, create, destroy, and so forth. A storage object itself cannot store appHediied data except that it im-

plicitly stores the names of the elements (storages and streamiajnas within it.

Storage and stream objects, when implemented by COM as a standard on a system, are sharable between processes.
This is a key feature that enables objects runningratess or oubf-process to have equal incremental access to

their ondisk storage. Since COM is loaded into each process separately, it must use some epgstingsup-

ported shared memory mechanisms to communicate between processes about opened elements and their access

modes.

.3 Application Design with Structured Storage

C O Msdstructured storage built out of storage and stream objects makes it much easier to design applications that by
structured information.
entries for any day of any mdnof any year. Entries are made in the form of some kind of object that itself manages

some information. Users wanting to write some text into the diary would store a text object; if they wanted to save a
scan of a newspaper clip they could use a bitmgecbd and so forth.

their nature produce

Without a powerful means to structure information of this kind, the diary application malibrced to manage

For

some hideous file structure with an overabundance of file position-cedéence pointers as shown in FiguréR

There are many problems in trying to put structured information into a flat file. First, there is the sheer tedium of
managing all the croseference pointers in all the different structures of the file. Whenever a piece of information
grows or moves in the file, every cressference offset referring to that information must be updated as well. There-

File Header
|-' Offset to year
Off ear o
y v
” Month Header - f
Year Hea : Offset to day Y
Offset to month - | Offset to day — ay Heade
Offset to month ~_ Offsetto day ——
Offest to month \\l—— . — ay Header
3 Month Header _
g Text Object
\|_——_1 Text
Year Header Month Hea
1 Bitmap Objec
Format Info
—» Header i
o Offset to Text
(continuation of file) Offset to Bitmap
et awing . |
T Drawing Object
Metafile

Figure 2-11: A flat-file structure for a diary application. This
sort of structure is difficult to manage.

exampl

fore even a small @nge in the size of one of the text objects or an addition of a day or month might precipitate
changes throughout the rest of the file to update seek offsets. While not only tedious to manage, the application will
have to spend enormous amounts of time imginformation around in the file to make space for data that expands.
That, or the application can move the newly enlarged data to the end of the file and patch a few seek offsets, but that
introduces the whole problem of garbage collection, that is,agiag the free space created in the middle of the file

to minimize waste as well as overall file size.

DRAFT: October 24,1995

Page:49

Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

The problems are compounded even further with objects that are capable of reading and writing their own infor-
mation to storage. In the example here, thary application would prefer to give each objects & tiéxt, bitmap,
drawing, table, eté. its own piece of the file in which the object can write whatever the it wants, however much it
wants. The only practical way to do this with a single flat fildoisthe diary application to ask each object for a
memory copy of what the object would like to store, and then the diary would write that information into a place in
its own file. This is really the only way in which the diary could manage the locatiafl tfe information. Now

while this works reasonably well for small data, consider an object that wants to store a 10MB bitmap scan of a
true-color photograpf exchanging that much data through memory is horribly inefficient. Furthermore, if the end
user vants to later make changes to that bitmap, the diary would have to load the biterapetyfrom its file and

pass it back to the object. This is again extraordinarily ineffidént.

COMbs Persistent Storage technol ogy simdirectiersof & fileesgsempr ob | e
within a file. With COM, the diary application can create a structured hierarchy where the root file itself has
sub-storages for each year in the diary. Each yearssakage has a stdtorage for each month, and each montd ha

a substorage for each day. Each day then would have yet anothestai#yge or perhaps just a stream for each piece

of information that the user stores in that dayrhis configuration is illustrated in FigureZ2.

Root (File)
File Header
Lo

Year Header

o2y

||O.

Day...
Daygader
Drawing Object l
Text Object
Bitmap Object

Text —
O < Format Info

Storage
e B i
Stream) @

Figure 2-12: A structured storage scheme for a diary application. Egry object that has
some content is given its own storage or stream element for its own exclusive use.

This structure solves the problem of expanding information in one of the objects: the object itself expands the
streams in its control and the COM implentation of storage figures out where to store all the information in the
stream. The diary application doesnbot have to |ift a fi
manages unused space in the entire file, again, relieving the didigatjom of a great burden.

In this sort of storage scheme, the objects that manage the content in the diary always haveineehtalaccess

to their piece of storage. That is, when the object needs to store its data, it wtitestly into the dary file without

having to involve the diary application itself. The object can, if it wants to, writteemental change® that storage,

thus leading to much better performance than the flat fle scheme could possibly provide. If the end user wanted to
make changes to that information later on, the object can then incrementally read as little information as necessary
instead of requiring the diary to read all the information into memory first. Incremental access, a feature that has
traditionally been vey hard to implement in applications, is now tthefault mode of operatiorAll of this leads to

much better performance.

20 This mechanism, in fact, was employed by compound documents in Mictosbs OLE version 1. 0. The probl ems ¢
the major | imitations of OLE 1.0 which provided much of the i mpetus
2L The application would only create year, month, and day substorages for those déngal tiviormation in them, that is, the diary application
would create sparse storage for efficiency.

Copyright ©199295 Microsoft Corporation Page:50 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

.4 Naming Elements

Every storage and stream object in a structured file has a specific character name to identify it. These names are used
to tell IStoragefunctions what element in that storage to open, destroy, move, copy, rename, etc. Depending on
which component, client or object, actually defines and stores these names, different conventions and restrictions
apply.

Names of root storage objects are in fact names of files in the underlying file system. Thus, they obey the conven-
tions and restrictions #t it imposes. Strings passed to storaglated functions which name files are passed on
ur-interpreted and unchanged to the file system.

Names of elements contained within storage objects are managed by the implementation of the particular storage
objectin question. All implementations of storage objects must at the least support element names that are 32 char-
acters in length; some implementations may if they wish choose to support longer names. Names are stored
casepreserving, but are compared cdssensitive?? As a result, applications which define element names must
choose names which will work in either sitigat.

The names of elements inside an storage object must conform to certain conventions:
1. The two specific names fi.0 and fi.. 0 are reserved for f
2. El ement names cannot contbai mMm/any ficfo,t e fidwr. character

In addition, the name space in a storage element is partitioned in to different areas of ownership. Different pieces of
code have the right to create elements in each area of the name space.

1 The set of element names beginning with characters other@fax 0 16 tWx aBE§h (Hhat i s, de
through decimal 31) are for use by the object whose data is stored li&ttiiege Conversely, the object must
notuse element names beginning with these characters.

1 Element names beginning withéa x 0 an@lao x o0 areé for the exclusive use of COM and other system code built
on it such as OLE Documents.

1 Element names beginning withéa x 0 are for the exclusive use of the client which is managing the object. The
client can use this space as a place teipntly store any information it wishes to associate with the object
along with the rest of the storage for that object.

T El ement names BOexglddnd iaarge wlidrh tahed exclusive use of the
tion itself. They will beuseful, for example, should that implementation support other interfaces in addition to
IStorage, and these interface need persistent state.

1 Element names beginning witlo x 0 @il a0 x 0 aré for the exclusive use of COM and other system code built
onit such as OLE Documents.

1 All other names beginning witlio x othiughao x 1 a e reserved for future definition and use by the system.

I'n general, an el ement 6s n ameser. Therefore if a aiemtrmantsdte stoeedspecifs e f u |
userreadable names of objects, it usually uses some other mechanism. For example, the client may write its own
stream under one of its own storage elements that has the names of all the other objects within that same storage
element. Another method wiglibe for the client to store a stream nani@dk 0 3Naimeo each object b6s st
would contain that objectds named x 3berlierd ownditeat ssream everm n a me
through the objects controls much of the rest of fhatage element.

.5 Direct Access vs. Transacted Access

Storage and stream elements support two fundamentally differeaé $rof access: direct mode and transacted mode.

Changes made while in direct modee immediately and permanently made to the affected storage object. In trans-

acted modechanges are buffered so that they maybeessed (fAcommi ttedo) or reverted wh
plete.

If an outermost levellStorage is used in transacted mode, then when it commits, a robusplhase commit operation
is used to publish those changes to the underlying file on the file sy$teahis, great pains are taken are taken so as
not to |l oose the usero6s data should an untimely crash oc

22 Case sensitivity is a locakensitive operation: some characters compare-ioae@stiveequal in some locales andot-equal in others. In an
IStorage implementation, the caisisenstive comparision is done with respect to the current locaddich the system is presently running.
This has implications on the use of IStorage names for those who wish to create globally portable documents.

DRAFT: October 24,1995 Page:51 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

The need for transacted mode is best explained by an illustrative scenario. Imagine that a user has created a spread-
sheet which contains a sountpcobject, and that the sound clip is an object that uses the new persistent storage
facilities provided in COM. Suppose the user opens the spreadsheet, opens the sound clip, makes some editing
changes, then closes the sound clip at which point the chargaupdated in the spreadsheet storage set aside for the
sound clip. Now, at this instant, the user has a choice: save the spreadsheet or close the spréthdsheating.

Either way, the next time the user opens the spreadsheet, the sound cliptteacdé in the appropriate state. This

implies that at the instant before the save vs. close decision was made, both the old and the new versions of the sound
clip had to exist. Further, since large objects are precisely the ones that are expensieeamdtispace to copy, the

new version should exist as a sedifferencedrom the old.

The central issue is whose responsibility it is to keep track of the two versions. The client (the spreadsheet in this
example) had the old version to begin with, se tffuestion really boils down to how and when does the object
(sound clip) communicate the new version to the spreadsheet. Applications today are in general already designed to
keep edits separate from the persistent copy of an object until such time wsethdoes a save or update. Update

time is thus the earliest time at which the transfer should occur. The latest is immediately before the client saves
itself. The most appropriate time seems to be one of these two extremes; no intermediate time hsceamlylel
advantage.

COM specifies that this communication happens at the earlier time. When asked to update edits back to the client, an
object using the new persistence support will write any changes to its storage) exactly as if it were doing &ssave to
own storage completely outside the client. It is the responsibility of the client to keep these changes separate from the
old version untilit does a save (commit) or close (revert). Transacted mod&tonage makes dealing with this
requirement easgnd efficient.

The transaction on each storage is nested in the transaction of its parent storage. Think of the act of committing a
transaction on amstoragei n st ance as fApublishing changes one more | eve
to the tansaction of the next object outwards; outermost objects publish changes permanently into the file system.

Letdés examine for a moment the implications of wusing in
changes to itself until it is kven that the user wants to commit the client (save the file). This may happen many
minutes after the contained object was edited. COM must therefore allow for the possibility that in the interim time
period the user closed the server used to edit the glgeute such servers may consume significant system re-
sources. To implement this second option, the server must presumably keep the changes to the old version around in
a set of temporary files (remember, these are potentiéddlp b j ect s) . dommittime every semwer wald

have to be restarted and asked to incorporate any changes back onto its persistent storage. Thivemuichbe
consuming, and could significantly slow the save operation. It would also cause reliability concernuirs ther 6 s
mind: what if for some reason (such as memory resources) a server cannot be restarted? Further, even when the cli-
ent is closedwithout saving, servers have to be awakened to clean up their temporary files. Finally, if a object is
edited a second tienbefore the client is committed, in this option its the client can only provideltheoriginal

storage, not the storage that has the first edits. Thus, the server would have to recognize on startup that some edits to
this object were lying around inehsystem. This is an awkward burden to place on servers: it amounts to requiring
that theyall support the ability to do incremental atgave with automatic recovery from crashes. In short, this ap-
proach would significantly and unacceptably complicaterésponsibilities of the object implementors.

To that end, it makes the most sense that the standard COM implementation of the storage system support transac-
tioning throughistorage and possiblystream.

.6 Browsing Elements

By its nature, COMdés structured storage separates appl i
file. Every element of information ithat file is access using functions and interfaces implemented by COM. Be-

cause this implementation is central, a file generated by some application using this structure can be browsed by
some other piece of code, such as a system shell. In other wordgieaeyof code in the system can use COM to

browse the entire hierarchy of elements within any structured file simply by navigating withtdtage interface

functions which provide directofljke services. If that piece of code also knows the formatthedmeaning of a

specific stream that has a certain name, it could gp@mthat stream and make use of the information imvithout

having to run the application that wrote the file.

This is a powerful enabling technology for operating system shedswant to provide rich query tools to help end
users look for information on their machine or even on a network. To make it really happen requires standards for
certain stream names and the format of those streams such that the system shell can stpesimhand execute
gueries against that information. For example, consider what is possible if all applications created a stream called

Copyright ©199295 Microsoft Corporation Page:52 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

ASummary I nformationdo underneath the root storage el eme]
information such as the author of the document, the create/modify/last savedtaimps, title, subject, keywords,

comments, a thumbnail sketch of the first page, etc. Using this information the system shell could find any docu-
ments that a certain user writefbee a certain date or those that contained subject matter matched against a few
keywords. Once those documents are found, the shell can then extract the title of the document along with the
thumbnail sketch and give the user a very engaging display sktireh results.

This all being said, in the general the actual utility of this capability is perhaps significantihd@sw/hat one might

first imagine. Suppose, for example, that | have a structured storage that contains some word processing document
whose semantics and persistent representation | am unaware of, but which contains some number of contained ob-
jects, perhapghe figures in the document, that | can identify by their being stored and tagged in contained
sub-storages. One might naively think that it would be reasonable to be able to walk in and browse the figures from
some systenprovided generic browsing utilit This would indeed work from a technical point of view; however, it

is unlikely to be useable from a user interface perspective. The document may contain hundreds of figures, for ex-
ample, that the user created and thinks about not with a name, not mitintzer, but only in the relationship of a
particular figure to the Withswhat usdrinterfaee callol one masortaldlyspresentf or ma
this list of objects to the user other than as some-lagcd and arbitrarilyordered sequence®her is, for example,

no name associated with each object that one could use to leveragesystfden directorbrowsing user interface

design. In general, theontentof a document can only be reasonably be presented to a human being using a tool that
undestands the semantics of the document content, and thus can show all of the information therein in its appropri-
ate context.

.7 Persistent Objects

Because COM allows an object to read and write itself to storage, there must be a way through which the client tells
objects to do so. The way is, of course, additional interfaces that form a storage contract between the client and o
jects. When a client wants to tell and object to deal with storage, it queries the object for one of the persis-
tencerelated interfaces, as suits the context. The interfaces that objects can implement, in any combination, are de-
scribed below:

IPersistStorage Object can read and write its persistent state to a storage object. The client pro-
vides the object with arstorage pointer through this interface. This is the only
IPersist* interface that includes semantics for incremental access.

IPersistStream Object can read and write its persistent state to a stream object. The client pro-
vides the object with arstream pointer through this interface.

IPersistFile Object can read and write its persistent state to a file on the underlying system
directly. This inteface does not involvestorage or IStream unless the underlying
file is itself access through these interfaces, butrbmeistFile itself has no se-
mantics relating to such structures. The client simply provides the object with a
filename and orders tase or load; the object does whatever is necessary to ful-
fill the request.

These interfaces and the rules governing them are described in Chapter 12.

7 Persistent, Intelligent Names Monikers

To set the context for why fAPersistent, Intell ignent Name
about a standard, mundane file name. That file name refers to some collection of data that happens to be stored on

disk somewhere. The file name describes the somewhere. In that sense, the file name is really a name for a particular
fobj ect oherthe abjeat is defined by the data in the file.

The limitation is that a file name by itself is unintelligent; all the intelligence about what that flename means and

how it gets used, as well as how it is stored persistently if necessary, is contaweatever application is the client

of that file name. The file name is nothing more than some piece of data in that client. This means that the client
must have specific code to handl e fil e dnmmsnappkationsitans nor ma
deal with files and have been doing so for a long time.

Now introduce some sort of name that describes a query in a database. The introduce others that describe a file and a

specific range of data within that file, such as a range of spreatdsbiés or a paragraph is a document. Introduce yet
more than identify a piece of code on the system somewhere that can execute some interesting operation. In a world

DRAFT: October 24,1995 Page:53 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

where clients have to know what a name means in order to use it, those clients ewithgpdwarite specific code
for each type of name causing that application to grow monolithically in size and complexity. This is one of the
problems that COM was created to solve.

In COM, therefore, the intelligence of how to work with a particular nasenicapsulated inside the name itself,

where the name becomes an object that implements-nelated interfaces. These objects are caftexhikers®® A

moniker implementation provides an absttai on t o some wunderl ying connection (
different moniker class (with a differetLsID) has its own semantics as to what sort of object or operation it can

refer to, which isentirelyup to the moniker itself. A section belowsteibes some typical types of monikers. While a

moniker class itself defines the operations necessary to locate some general type of object or perform some general
type of action, each individual monikebject(each instantiation) maintains its own nanmatalthat identifies some

other particular object or operation. The moniker class defines the functionality; a moniker object maintains the
parameters.

With monikers, clients always work with names through an interface, rather than directly manipulastrgte (or
whatever) themselves. This means that whenever a client wishes to perform any operation with a name, it calls some
code to do it instead of doing the work itself. This level of indirection means that the moniker can transparently pro-
vide a whde host of services, and that the client can seamlessly interoperate over time with various different moniker
implementations which implement these services in different ways.

.1 Moniker Objects

A moniker is simply an object that supports theniker interface.iMoniker interface includes theersistStream inter-

face?* thus, monikers can be saved to and loaded from swe@he persistent form of a moniker includes the data
comprising its name and the CLSID of its implementation which is used during the loading process. This allows new
kinds of monikers to be created transparently to clients.

The most basic operation ingfMoniker interface is that obindingto the object to which it points. The binding func-

tion in IMoniker takes as a parameter the interface identifier by which the client wishes to talk to the bound object,

runs whatever algorithm is necessary in oraelotate the object, then returns a pointer of that interface type to the
client. The client c¢ an stardgse(for erample, thastordgei conthinimgdhe bhijeet) ifald> j e ct 6 s
sired, instead of to the running object through a slightlyedéffitimoniker function. As binding may be an expensive

and timeconsuming process, a client can control how long it is willing to wait for the binding to complete. Binding

al so takes place inside a specific hfalcontexd enabtes thebindidg t h at
process overall to be more efficient by avoiding repeated connections to the same object.

A moni ker also supports an oper atwriesitsetf ato lareotther équiealdnt ct i on o
moniker that will bihd to the same object, but does so in a more efficient way. This capability is useful to enable the
construction of usedefined macros or aliases as new kinds of moniker classes (such that when reduced, the moniker

to which the macro evaluates is returh@hd to enable construction of a kind of moniker which tracks data as it

moves about (such that when reduced, the new moniker contains a reference to the new location). Chapter 9 will
expand on the reduction concept.

Each moniker class can store arbitra@ata its persistent representation, and can run arbitrary code at binding time.

The client therefore only knows each moniker by the presence of a persistent representation and whatever label the
client wishes to assign to each moniker. For example, aspre heet as a cl i ent may keep, f
a | ist of Alinksd to other spreadsheets where, in fact,
whether the moniker is loaded or persistently on disk at the moment) whemettiker manages the real identity of

the linked data. When the spreadsheet wants to resolve a link for the user, it only has to ask the moniker to bind to

the object. After the binding is complete, the spreadsheet then has an interface pointer foetheliekt and can

talk to it directlyd the moniker falls out of the picture as its job is complete.

The label assigned to a moniker by a client does not have to be arbitrary. Monikers support the ability to produce a
Adi spl ay nameo f o represénathakivsaitableotdshavdctan ént @sgr. A moniker that maintains a
file name (such that it can find an application to load that file) would probably just use the file name directly as the
display name. Other monikers for things such as a query want to provide a display name that is a little more
readable than some query languages.

ZThe word fimonikero is fairly obscure synonym for fAnickname. 0
% One of the few instances of inheritance from one mai@rface to another, which thiloniker designer later decided was actually less pref-
erable to having a moniker implemdMoniker andlPersistStreanseparately. See the first footnote in Chapter 9.

Copyright ©199295 Microsoft Corporation Page:54 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

.2 Types of Monikers

As some 6the examples above has hinted, monikers can have many types, or classes, depending on the information
they contain and the type of objects they can refer to. A moniker class is really defined by the information it persis-
tently maintains and the bindingeration is uses on that information.

COM itself, however, only specifies one standard moniker calledydreeric compositenoniker The composite

moniker is special in two ways. First, its persistent datompletelycomposed of the persistent data tfer moni-

kers, that is, a composite moniker is a collection of other monikers. Second, binding a composite moniker simply
tells the composite to bind each moniker it contains in
is defined by dier monikers, it is a standard type of moniker that works identically on any host system; the compo-

site isgenericbecause it has no knowledge of its pieces except that they are monikers. Chapter 9 described the ge-
neric composite in more detail.

So what oer types of monikers can go in a composite? Virtually any other type (including other composite moni-
kers!). However, other types of monikers are not so generic and have more dependency on the underlying operating
system or the scenarios in which such aniker is used.

For exampl e, Mi crosoftdés OL EDOJ file temnastispoifited uhat it agedhspecificalp e ci f i ¢
l'y to help implement Alinked objectsodo in its compound do
a file nameas its persistent data and its binding process is one of locating an application that can load that file,
launching the application, and retrieving from it i@arsistFile interface through which the file moniker can ask the

application to load the filetém monikers are used to describe smaller portions of a file that might have been loaded

with a file moniker, such as a specific sheet of a tttieeensional spreadsheet or a range of cells in that sheet. To
Alinkd to a specif i eetad &dpeécifiofientheeingle moniker sgeckto describe the Ink is a

generic composite that is composed with a file moniker and two item monikers as illustrated in Figurgath

moniker in the composite is one step in the path to the final s@ditbe link.

Display Name —}—te CA\Q3RPT.DOC Jo| sALEsTBL Jo| R2c2:r7c4 | |
e File Moniker | | item Moniker } | item Moniker |
Moniker class

. Generic Composite Moniker

Figure 2-13: A composite moniker that is composed with a file moniker and two item monikers
to describe the source of a link which is a cell range in a specific sheet of a spreadsheet file.

More complete descriptions of the file, item, anti, and pointer monikers from OLE are provided in Chapter 9 as ex-
amples of how monikers can be used. But monikers can represent virtually any type of information and operation,
and are not limited to this biasset of OLE defined monikers.

.3 Connections and Reconnections

How does a client come by a moniker in the first place®ther words, how does a client establish a connection to

some object and obtain a moniker that describes that connection? The answer depends on the scenario involved but is
generally one of two ways. First, the source of the object may have createdlemard made it available for con-
sumption through a data transfer mechanism such (in the workstation case) as a clipboard or perhaps a drag & drop
operation. Second, the client may have enough knowledge about a particular moniker class that it camesgnthes
moniker for some object using other known information such that the client can forget about that specific infor-
mation itself and thereafter deal only with monikers. So regardless of how a client obtains a moniker, it can simply
ask the moniker to bihto establish a connection to the object referred to by the moniker.

Binding a moniker does not always mean that the moniker must run the object itself. The object might already be
running within some appropriate scope (such as the current desktop) timé¢hine client wants to bind the moniker
to it. Therefore the moniker need only connect to that running object.

COM supports this scenario through two mechanisms. The first Buhaing Object Table which objects register
themselves and their monilewhen they become running. This table is available to all monikers as they attempt to
bindd if a moniker sees that a matching moniker in the table, it can quickly connect to the already running object.

8 Uniform Data Transfer

Just as COM provides interfaces for dealing with storage and object naitréhgp provides interfaces for exchang-
ing data between applications. So built on top of both COM and the Persistent Storage technology is Uniform Data
Transfer, which provides the functionality to represent all data transfers through a single impliemerfta data

DRAFT: October 24,1995 Page:55 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

object Data objects implement an interface callediaObject which encompasses the standard operations of get/set
data and query/enumerate formats as well as functions through which a client of a data object can establish a notifi-
cation lmp to detect data changes in the object. In addition, this technology enables use of richer descriptions of data
formats and the use of virtually any storage medium as the transfer medium.

.1 Isolation of Transfer Protocols

The fAUniformd in the name of t h i 19atadbjectciriienfacé sepgayatesaall the e fr or
common exchange operations from whatadled atransfer protocol Existing protocols include facilities such as a
ficlipboardo or a fidrag & dropo feature as wel/l as compou
Transfer, all protocols are concerned only with exchanging a poiatan iDataObject interface. The source of the

datad the servedeneed only i mpl ement one data object which i s usce
consumed the cliend need only implement one piece of code to request data from a data objedt rmoedves an

IDataObject pointer from any protocol. Once the pointer exchange has occurred, both sides deal with data exchange in

a uniform fashion, througtbataObject.

This uniformity not only reduces the code necessary to source or consume datap lmreatly simplifies the code

needed to work with the protocol itself. Before COM was first implemented in OLE 2, each transfer protocol availa-
ble on Microsoft Windows had its own set of functions that tightly bound the protocol to the act of reqdesting

and so programmers had to implement specific code to handle each different protocol and exchange procedure. Now
that the exchange functionality is separated from the protocol, dealing with each protocol requires only a minimum
amount of code which iabsolutely necessary for the semantics of that protocol.

While of course extremely useful in the context of OLE Documents, Uniform Data Transfer is a generic service with
applications far beyond OLE Documents.

.2 Data Formats and Transfer Mediums

Before Uniform Data Transfer, virtually all standard protocols for data transfer were quite weak at describing the

data being trasferred and usually required the exchange to occur through global memory. This was especially true

on Microsoft Windows: the format was described by a singhd 16t ficlipboard formato and tFh
global memory.

The problem wifbrmheodcbki phaardt can only describe the
layout of the bits. For example, the fornes_TEXT describes ASCII textCF_BITMAP describes a deviedependent

bitmap of so many colors and such and such dimensioanhsyds incapable of describing the actual device it depends

upon. Furthermore, none of these formats gave any indication of what was actually in the data such as the amount of
detaild whether a bitmap or metafile contained the full image or just a thumsketith.

The problem with always using global memory as a transfer medium is apparent when large amounts of data are
exchanged. Unless you have a machine with an obnoxious amount of memory, an exchange of, say, a 20MB scanned
true-color bitmap through gladd memory is going to cause considerable swapping to virtual memory on the disk.
Restricting exchanges to global memory means that no application can choose to exchaogalstahen it will
usuallyreside on disleven when being manipulated and wiually use virtual memory on disk anyway. It would

be much more efficient to allow the source of that data to indicate that the exchange happens on disk in the first place
instead of forcing 20MB of data through a virttraemory bottleneck to just haveahd up on disk once again.

Further,latency of the data transfer is sometimes an issue, particularly in network situations. One often needs or
wants to start processing theginningof a large set of data before the end the data set has even reachestittnee- d
tion machine. To accomplish this, some abstraction on the medium by which the data is transferred is needed.

To solve these problems, COM defines two new data structem#@MATETC and STGMEDIUM. FORMATETC is a

better clipboard format, for the struece not only contains a clipboard format but also contains a device description,

a detail description (full content , t humbnai l sketch, [
vice is used for a particular rendering. TWORMATETC structures that differ only by storage medium are, for all

intents and purposes, two different formedsGMEDIUM is then the better global memory handle which contains a

flag indicating the medium as well as a pointer or handle or whatever is necessacgss that actual medium and

get at the data. TwWeTGMEDIUM structures may indicate different mediums and have different references to data, but

those mediums can easily contain the exact same data.

S0 FORMATETC is what a consumer (client) uses to indictite type of data it wants from a data source (object) and
is used by the source to describe what formats it can prom@mevMATETC can describe virtually any data, including
other objects such a monikers. A client can ask a data object for an enumefat®formats by requesting the data

Copyright ©199295 Microsoft Corporation Page:56 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

0bj elEndmBPOSKMATETCi nt er f ace. Instead of an object bl andly stat
has AA-icdeipeedent string of text that i s stmaprenderedn gl ob
for a 100dpi dotmatrix printer which is stored in agtorageo b j ect . 06 Thi s abil ity to tight

result in higher quality printer and screen output as well as more efficiency in data browsing where a thumbnail
sketh is much faster to retrieve and display than a full detail rendering.

STGMEDIUM means that data sources and consumers can now choose to use the most efficient exchange medium on a
perrendering basis. If the data is so big that it should be kept ontliskiata source can indicate a disdsed me-

dium in itds preferred format, only using gl obal me mor y
the benefit of using thbestmedium for exchanges as the default, thereby improving oveealbpnance of data

exchange between applicatiénef some data is already on disk, it does not even have to be loaded in order to send it

to a consumer who doesndt Awoesh BOMé§st dat eadxtchaopenmeehbe
as goodas anything available todawhere all transfers restricted to global memoAy.best data exchanges can be

effectively instantaneous even for large data.

Note that two potential storage mediums that can be used in data exchange are storage objeetsnant jstts.
Therefore Uniform Data Transfer as a technology itself builds upon the Persistent Storage technology as well as the
basic COM foundation. Again, this enables each piece of code in an application to be leveraged elsewhere.

.3 Data Selection

A data object can vary to a number of degrees as to what exact data it can exchange thnoagiobieet interface.

Some data objects, such as those representing the clipboard or those used in a drag & drop operation, statically rep-
resent a specific selection of data in the source, such as a range of cells in a spreadsheet, a certain portion of a bit-
map, or a cgain amount of text. For the life of such static data objects, the data underneath them does not change.

Other types of data objects, however, may support the ability to dynamically change their data set. This ability,
however, is not represented througie DataObject interface itself. In other words, the data object has to implement
someother interface to support dynamic data selection. An example of such objects are those that support OLE for
RealTime Market Data (WOSA/XRT) specificatic.OLE for ReatTime Market Data uses a data object aine

IDataObject interface for exchange of data, but use ihispatch interface from OLE Automation to allow consumers

of the data to dynamically instruct the data object to change its working set. In other words, the OLE Automation
technology (built on ©M but not part of COM itself) allows the consumer to identify the specific market issues and

the information on those issues (high, low, volume, etc.) that it wants to obtain from the data object. In response, the

data object internally determines wheoerétrieve that data and how to watch for changes in it. The data object then
notifies the consumer of changes in the data through COM

.4 Notification

Consumers of data from an external source might be interested in knowing when data in that source changes. This
requires some mechanism through which a data object itself asynchronotiibsre client connected to it of just

such an event at which point a client can remember to ask for an updated copy of the data when it later needs such an
update.

COM handles natifications of this kind through an object calle@dwise sinkvhich implements an interface called
IAdviseSink.2® This sink is a body that absorbs asynchronous notifications from a data source. The advise sink object
itself, and thaAdviseSink interface § implemented by the consumer of data which then handsiggesink pointer to

the data object in question. When the data object detects a change, it then calls a funstigsedink to notify the
consumer as illustrated in Figurel?.

% OLE for ReaiTi me Mar ket Data was formerly called the AWOSA Extensions for
other industry specific extensions to OLE is available from Microsoft.

% Astute readers will wonder why Uniform Data Transfer is defined using the Connectable Objects interfaced described préuieusigson
is simple: UDT was designed as part of the original OLE 2.0 specificatid®91, and Connectable Objects were not introduced until the re-
lease of the OLE Controls specification in 1993.

DRAFT: October 24,1995 Page:57 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

Call to establish
notification passes
|AdviseSink

N\
nsumer
IDataObject Obje
Advise |
Sink
I1AdviseSink Data Sourc
v

Data source
notifies IAdviseSink
on data changes

Figure 2-14: A consumer of data implements an object with théAdviseSinkinterface
through which data objects notify that consumer of data changes.

This is the most frequent situation where a client of one object,isncise the consumer, will itself implement an

object to which the data object acts as a client itself. Notice that there are no circular reference counts here: the con-
sumer object and the advise sink have different COM object identities, and thus segl@ratece counts. When the

data object needs to notify the consumer, it simply calls the appropriate member funchidnsegink.

SolAdviseSink is more of a central collection of notifications of interest to a number of other interfaces and scenarios
outside ofiDataObjectand dat a exchange. It contains, for exampl e, a
when a particular view of data changes without a change in the underlying data. In addition, it contains functions for
knowing when arobject has saved itself, closed, or been renamed. All of these other notifications are of particular

use in compound document scenarios and are used in OLE, but not COM proper. Chapter 14 will describe these
functions but the mechanisms by which they @abed are not part of COM and are not covered in this specification.
Interested readers should refer to the OLE 2 Specifications from Microsoft.

Finally, data objects can establish notifications with multiple advise sinks. COM provides some assistdate for
objects to manage an arbitrary numbertaafiseSink pointers through which the data object can pass each pointer to
COM and then tell COM when to send notifications. COM in turn notifies all the advise sinks it maintains on behalf
of the data object

Copyright ©199295 Microsoft Corporation Page:58 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

3. Objects And Interfaces

This chapter describes in detail the heart of COM: the notion of interfaces and their relationships to the objects on
which they are implemented. More specifically, this chapter covers whattarface is (technically), interface call-

ing conventions, object and interface identity, the fundamental interface aatledwn, and COM6és error r
mechanism. In addition, this chapter describes how an object implements one or more intexrfaelisas a special

type of object called the fAenumeratoro which comes up in

As described in Chapters 1 and 2, the COM Library provides the fundamental implementation locator services to
clients and provides all the necessary gdelp clients communicate transparently with object regardless of where

those objects execute:-process, oubf-pr o ce s s, or on a different machine enti
services through interfaces, and COM provides implementatiom f t he #fAproxyo and fAstubodo o
munication possible between processes and machines where RPC is necessary.

However, as wedl |l see in this chapter and those that fol
tions for both clierd and servers or, in general, any piece of code that uses COM, application or not. These API
functions will be described in the context of where other applications or DLLs use them. A COM implementor read-

ing this document will find the specifications foaah function offset clearly from the rest of the text. These func-

tions are implemented in the COM Library to standardize the parts of this specification that applications should not

have to implement nor would want to implement. Through the services €@ Library, all clients can make use

of all objects in all servers, and all servers can expose their objects to all clients. Only by having a standard is this
possible, and the COM Library enforces that standard by doing most of the hard work.

Not all the COM Library functions are truly fundamental. Some are just convenient wrappers to common sequences

of other call s, someti mes called Ahelper functions. o Ot
applications. Others just provide alig implementation of functions that could be implemented in every application,

but would be tedious and wasteful to do so.

1 Interfaces

An interface in the COM definition, is a contract between the user, or client, of some object and the object itself. It is
a promise on the part of the object to provide a certain level of service, of functionality, to that client. Chapters 1 and
2 have already expimed why interfaces are important COM and the whole idea of an object model. This chapter will
now fill out the definition of an interface on the technical side.

.1 The Interface Binary Standard

Technically speaking, an interface is some data structu!l
mentation through which the client requests the objectd:c
set of member functions that the client can call to access that object implementation. Those member functions are
exposed outside the object implementor application such that clients, local or remote, can call those functions.

The client maintains a pointéo the interface which is, in actuality, a pointer to a pointer to an array of pointers to
the objectds i mpl ementations of the interface member fun
ture is illustrated in Figure-3.

Interface Function Table

Interface Pointer | Pointer to Function. -

Pointer to Functiol ——»| Object Implementation
of interface functions

~,
—

| Pointer to Function ——»
I Y

J
-

Figure 3-1: The interface structure: a client has a pointer to an interface which is
a pointer to a pointer to an array (table) of poin

By convention the pointer to the interface function talslealled thepvibl pointer. The table itself is generally re-
ferred to with the namebif or fAvi rt ual function table. o

On a given implementation platform, a given method in a given interface (a particular IID, that is) has a fixed calling
convention; thiss decoupled from the implementation of the interface. In principle, this decision can be made on a
method by method basis, though in practice on a given platform virtually all methods in all interfaces use the same
calling convent i éibhWind@ns platform,rttosdefdult i6 the fat _6cdecl calling convention; on

DRAFT: October 24,1995 Page:59 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

Win32 platforms, the stdcall calling convention is the default for methods which do not take a variable number of
arguments, and cdecl is used for those that do.

In contrastjust for note, COM API functions (not interface members) use the standard host-sgitealing con-
vention, which on both Microsoft Winl16 and Win32 is théar _ pascal sequence.

Finally, and quite significantlyall strings passed through all COM imtrfaces(and, at least on Microsoft platforms,
all COM APIs)are Unicodestrings. There simply is no other reasonable way to get interoperable objects in the face

of (i) location transparency, and (ii) a higifficiency object architecture ¢ht doesnodt in all cases

temprovided code between client and server. Further, this burden is in practice not large.

When calling member functions, the caller must include an argument which is the pointer to the object instance it-
self. This isautomatically provided in C++ compilers and completely hidden from the caller. The Microsoft Object
Mapping?’ specifies that this pointer is pushed very last, immediately before the return address. The location of this
pointer is the reason that thenterface pointer appears at theeginningof the argument list of the equivalent C func-

tion prototype: it means that the layout in the stack of the parameters to the C function prototype is exactly that ex-
pected by the member function implemented in C++, and so-nodexing is required.

Usuallythe pointer to the interface itself is the pointer to the entire object structure (state variables, or whatever) and
that structure immediately follo% the pvtbl pointer memory as shown in Figure23

Interface Function Table \
{ \
interface Pointer IpVibl | Point tiol =|
. 1 - Object Implementation
Object = | erface functions
i Function L
State _I
Data | | /

Figure 3-2: Convention places object data following the pointer
to the interface function table.

Since thepvibl is received as thais pointer in the interface function, the implementor of that function knows which

object is being calledl an object is, after all, some structure and functions to manipulate that structure, and the inter-
face definition here supplies both.

I'n any cwest tihe¢tsurmmie is called a binary straisampettly becaus

determined by the particular interface being used and the platform on which it is being invoked. It is independent of
the programming language or tool used to create it. In other words, a program can be written in C to generate this
strucur e to match what C++ does automatically. For mor e
even create this structure in assembly if so inclined. Since compilers for other languages eventually reduce source
code to assembly (as is the compileself) it is really a matter for compiler vendors to support this structure for lan-
guages such as Pascal, COBOL, Smalltalk, etc. Thus COM clients, objects, and servers can be written in any lan-
guages with appropriate compiler support.

Note that it is tehnically legal for the binary calling conventions for a given interface to vary according the particu-
lar implementation platform in question, though this flexibility should be exercised by COM system implementors
only with very careful attention to sourg®rtability issues. It is the case, for example, that on the Macintosh, the
pVtbl pointer does not point to the first function in thel, but rather to a dummy pointer slot (which is ignored) im-
mediately before the first function; all the function peirg are thus offset by an index of one intve

d e

An interface i mplementor i s free t-apecifiedby-the-shtea nmeifocdroy bef o

whatever purpose he may wish; others cannot assume anything about such memory.

.2 Interface Definition and ldentity
Every interface has a name that serves as the programmatic caimgileype in code that uses that interface (either

as a client or as an object im@ ment or) . The convention is to name each

some descriptive label that indicates what functionality the interface encompasses. For exakrmple) is the label
of the interface that represents the functionalitgiobject when all else about that object is unknown.

”The fAMicrosoft Obj ect Mappingo is an open specificati aMsCi€etscri bing

compiler, & well as C++ compilers from other vendors including Borland, Symantec, Watcom, , and others. This is also the locatibis of th
pointer as placed by CFront when using the traditional +igieft __cdecl calling sequence. Thus, we achieve a large degree of interoperabil-

ity.
2 Ysually this datdollows the pVtbl pointer, but this is not required. It is perfectly legal foreatspecific data to precede the vtbl pointer, and
this in fact will be common with many C++ compilers.
Copyright ©199295 Microsoft Corporation Page:60 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

These programmatic types are defined in header files provided by the designer of the interface through use of the
Interface Description Language (IDL, see next section). For C++, an interface is dadimedabstract base, that is, a
structure containing nothing but Apur e v notationta expressne mb e r
the declaration of an interface. For example,ithenown interface is declared as:

interface lUnknown

{

virtual HRESULT Querylinterface(lID& iid, void** ppv) =0;
virtual ULONG AddRef(void) =0;

virtual ULONG Release(void) =0;

h
wh e niealdfi anodd efisscr i be the attribute of aintefiapekaywordisidefined al 6 f ur
as:
#define interface struct

The programmatic name and definition of an interface defines a type such that an application can declare a pointer to
an interface using standard C++ syntax asiftnown *.

In addition, this specifigtion as a notation makes some use of the C++ reference mechanism in parameter passing,
for example:

Querylinterface(const IID& iid, void**ppv);

Usually fconst <tREpwwe&oas si wrREFehDafsof convenience. As
ple would appear in a C version of the interface as a parameter of type:

const IID * const
Input parameters passed by reference will themselvesrisg as shown here. laut or out parameters will not.

The use of thenterface keyword is more a documenian technique than any requirement for implementation. An

interface, as a binary standard, is definable in any programming language as shown in the previous section. This
specificationds use of €Also, far gasd of readings thig spexificatian genenally ennits e n ¢ e .
parameter types in code fragments such as this but does document those parameters and types fully with each mem-
ber function. Types do, of course, appear indegdiles with interfaces.

It is very important to note that the programmatic name for an interface is @aypiletimetype used in applica-

tion source code. Each interface must also hawenaime identifier. This identifier enables a caller to qudwa
Querylnterface) an object for a desired interface. Interface identifierscan®s, that is, globallyunique 16 byte values,

of typellb. The person who defines the interface allocates and assigns ggewith any otheculD, and he informs

others of his choice at the same time he informs them of the interface member functions, semantics, etc. Use of a
GUID for this purpose guarantees that timewill be unique in all programs, on all machines, for all time, thetiore

idertifier for a given interface will in fact have the same 16 byte value.

Programmers who define interfaces convey the interface identifier to implementors or clients of that interface along
with the other information about the interface (in the form of heditess, accompanying semantic documentation,
etc.). To make application source code independent of the representation of particular interface identifiers, it is
standard practice that the header file defines a constant for each IID where the symbaolam¢hef the interface
prefixed withd 1 1 Buch that the name can be derived algorithmically. For example, the intasf&aewn has an
identifier callediD_1Unknown.

For brevity in this specification, this definition will not be repeated with each interface, though of course it is present
in the COM implementation.

.3 Defining Interfaces: IDL

The Interface Description Language (IDL) is based on the Open Software Foundation (OSF) Distributed Computing
Environment (DCE) specification for describing interfaces, operations, and attributes to define remote procedure
calls. COM extends the IDlotsupport distributed objects.

A designer can define a new custom interface by writing an interface definition file. The interface definition file uses
the IDL to describe data types and member functions of an interface. The interface definition filescthrganfor-

mation that defines the actual contract between the client application and server object. The interface contract speci-
fies three things:

1 Language binding defines the programming model exposed to the application program using a partiodlar pr
gramming language.

2 And, indeed, this syntawill at times be somewhat abused.

DRAFT: October 24,1995 Page:61 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

1 Application binary interfacé specifies how consumers and providers of the interface interoperate on a particu-
lar target platform.

1 Network interfacé defines how client applications access remote server objects via the network.

After completing the interface definition file, the programmer runs the IDL compiler to generate the interface header
and the source code necessary to build the interface proxy and interface stub that the interface definition file de-
scribes. The interface headfde is made available so client applications can use the interface. The interface proxy
and interface stub are used to construct the proxy and stub DLLs. The DLL containing the interface proxy must be
distributed with all client applications that use thew interface. The DLL containing the interface stub must be
distributed with all server objects that provide the new interface.

It is important to note that the IDL is a tool that makes the job of defining interfaces easier for the programmer, and
is oneof possibly many such tools. It is not the key to COM interoperability. COM compliance does not require that
the IDL compiler be used. However, as IDL is broadly understood and used, it provides a convenient means by
which interface specifications can benveyed to other programmers.

4 Cvs. C++vs. ...

This specification documents COM interfaces using C++ syntax as a notation but (again) does not mean COM re-
quires that prgrammers use C++, or any other particular language. COM is basedbonary interoperability
standard, rather thanlanguagei nt er operabi l ity standard. Any |l anguage s
containing doubléndirected access to a tabl&fanction pointers is suitable.

However, this is not to say all languages are created equal. It is certainly true that since the binary vtbl standard is
exactly what most C++ compilers generate on PC and many RISC platforms, Cibnsenienfanguage @ use
over a language such as C.

That being said, COM can declare interface declarations for both C++ and C (and for other languages if the COM
implementor desires). The C++ definition of an interface, which in general is of the form:
interface ISomelnterface

{
virtual RET_T MemberFunction(ARG1_T argl, ARG2_T arg2 /*, etc */);
[Other member functions]

B
then the corresponding C declaration of that interface looks like
typedef struct ISomelnterface

{
ISomelnterfaceVtbl * pVibl;
} ISomelnterface;

typedef struct ISomelnterfaceVtbl ISomelnterfaceVtbl;

struct ISomelnterfaceVtbl
{
RET_T (*MemberFunction)(ISomelnterface * this, ARG1_T arg1,
ARG2_T arg2 /*, etc */);
[Other member functions]
s
This example also illustrates the algorithm for determining the signature of C form of an interface function given the
corresponding C++ form of the interface function:

1 Use the same argument list as that of the member function, but add an initial {garesmieh is the pointer to
the interface. This initial parameter is a pointer to a C type of the same name as the interface.

1 Define a structure type which is a table of function pointers corresponding to the vtbl layout of the interface.
The name ofths structure type should be the name of the int
ture have the same names as the member functions of the interface.

The C form of interfaces, when instantiated, generates exactly the same binary structu@e-asnterface does

when some C++ class inherits the function signatures (but no implementation) from an interface and overrides each
virtual function.

These structures show why C++ is more convenient for the object implementor because C++ will autgmaticall
generate the vtbl and the object structure pointing to it in the course of instantiating an object. A C object imple-
mentor must define and object structure with ghiel field first, explicitly allocate both object structure and interface

Copyright ©199295 Microsoft Corporation Page:62 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

vibl structure explicitly fill in the fields of thevibl structure, and explicitly point thevtbl field in the object structure

to thevtbl structure. Filling thevtbl structure need only occur once in an application which then simplifies later object
allocations. Inany case, once the C program has done this explicit work the binary structure is indistinguishable from
what C++ would generate.

On the client side of the picture there is also a small difference between using C and C++. Suppose the client appli-
cation hasa pointer to ansomelnterface 0n some object in the variabpsome If the client is compiled using C++,
then the following line of code would call a member function in the interface:

psome->MemberFunction(argl, arg2, /* other parameters */);

A C++ compikr, upon noting that the type pdome is aniSomeinterface * will know to actually perform the double
indirection through the hiddepvtol pointer and will remember to push theome pointer itself on the stack so the
implementation ofMemberFunction knows which object to work with. This is, in fact, what C++ compilers do for any
member function call; C++ programmers just never see it.

What C++ actually does is be expressed in C as follows:
psome->IpVtbl->MemberFunction(psome, argl, arg2, /* other parameters */);

This is, in fact, how a client written in C would make the same call. These two lines of code show why C++ is more
conveniend there is simply less typing and therefore fewer chances to make mistakes. The resulting source code is
somewhat cleameas well. The key point to remember, however, is thav the client calls an interface member
depends solely on the language used to implement the client and is completely unrelated to the language used to
implement the objectThe code shown above tolican interface function is the code necessary to work with the
interface binary standard and not the object itself.

.5 Remoting Magic Through Vtbls

The double indirection othe vtbl structure has an additional, indeed enormous, benefit: the pointers in the table of
function pointers do not need to point directly to the real implementation in the real object. This is the heart of Loca-
tion Transparency.

It is true that in thdn-process server case, where the object is loaded directly into the client process, the function
pointers in the table are, in fact, the actual pointers to the actual implementation. So a function call from the client to
an interface member directly trafess execution control to the interface member function.

However, this cannot possibly work for local, let alone remote, object, because pointers to memory are absolutely not
sharable between processes. What must still happen to achieve transparentcghes ¢hant continues to call inter-
face member functionas if it were calling the actual implementatioin other words, the client uniformly transfers

control to some objectods member function by making the

DRAFT: October 24,1995 Page:63 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification

Client Process

L e
”Appiéiicatgioni

‘ll‘l-l‘:’l’:(;)C‘ESS‘ :
| Object

Remote
Object
Proxy

RPC

The Component Object Model

Local Server Process

. Localserver

RPC

Remote Machine

Remote Server Process

‘Remote Server

Figure 3-3: A client always calls interface members in some iprocess object. If
the actual object is local or remote, the call is made to a proxy object which then
makes a remote procedure call to the actual object.

So what member function actually executdsfe answer is that the interface member called is implemented by a
proxy object that is always an-process object that acts on behalf of the object being called. This proxy object
knows that the actual object is running in a local or remote servercaitdnaist somehow make a remote procedure

call, through a standard RPC mechanism, to that object as shown in Fgure 3

The proxy object packages up the function parameters in some data packets and generates an RPC call to the local or

remote object. Thgp ac k et i

S

picked

up

by

a stub object

in the ser

which unpacks the parameters and makes the call to the real implementation of the member function. When that
function returns, the stub packages up anypmammeters and the return value, sends it back to the proxy, which
unpacks them and returns them to the original client. For exact details on how thesprbxand RPC mechanisms

work, see Chapter 7.

The bottom line is that client and server always talkaoheother as if everything was-process. All calls from the

client and all calls to the server do at some point, in fact, happpmotess. But because thel structure allows

some agent, like COM, to intercept all function calls and all returns fuorctions, that agent can redirect those calls

to an RPC call as necessary. All of this is completely transparent to the client and server, hence Location Transpar-

ency30

2 Globally Unique Identifiers

As mentioned earlier in this document, the GUID, from which are also obtained CLSID, IIDs, and any other needed
unique identifier, is a 128it, or 16byte, value. The ternsuID as used in this specification is completely synony-

mous and interchangeable tvit t h e uubé r ms fi u s e d

by

the DCE RPC

architectur

same notion. In binary terms, a GUID is a data structure defined as follows, wh&®D is 32bits, WORD is

16-bits, andBYTE is 8-bits:

typedef struct GUID {
DWORD Datail;
WORD Data2;
WORD Datas;
BYTE Data4[8];
} GUID;

30 Of course, if a client timed the call it might be able to discern a performancetypériilhad both inprocess and owdf-process objects to

compare.

Copyright ©199295 Microsoft Corporation
All Rights Reserved

Page:64

DRAFT: October 24,1995

The Component Object Model The Component Object Model Specification

This structure provides applications with some way of addressing the parts of a GUID for debugging purposes, if
necessary. This information is also needed when GUIDs are transmitted bebaekines of different byte orders.

For the most part, applications never manipulate GUIDs diréctihyey are almost always manipulated either as a
constant, such as with interface identifiers, or as a variable of which the absolute value is unimparexantpde,

a client might enumerate all object classes registered on the system and display a list of those classes to an end user.
That user selects a class from the list which the client then maps to an absolute CLSID value. The client does not
care whathat value i8 it simply knows that it uniquely identifies the object that the user selected.

The GUID design allows for coexistence of several different allocation technologies, but the one by far most com-
monly used incorporates a8 machine unique iehtifier together with the current UTC time and some persistent
backing store to guard against retrograde clock motion. It is in theory capable of allocating GUIDs at a rate of
10,000,000 per second per machine for the next 3240 years, enough for mosegurp

For further information regarding GUID allocation technologies, see p8250f [CAE RPCE!

3 The IlUnknown Interface

This specification has already mentioned theknown interface many times. It is the fundamental interface in COM
that contains basic opations of not only all objects, but all interfaces as well: reference countin@angnterface.

All interfaces in COM are polymorphic wittunknown, that is, if you look at the first three functions in any interface
you see&Queryinterface, AddRef, and Release. In other wordsjunknown is base interface from which all other interfaces
inherit.

Any single object usually only requires a single implementation oftthenown member functions. This means that
by virtue of implementing any interface on an ettj you completely implement thenknown functions. You do not
generally need to explicitly inherit from nor implemeniknown as its own interface: when queried for it, simply
typecast another interface pointer intolanknown* which is entirely legalith polymorphism.

In some specific situations, more notably in creating an object that supports aggregation, you may need to implement
one set ofiunknown functions for all interfaces as well as a staidnelunknown interface. The reasons and tech-
niqgues for this are described in the AObject Reusability

In any case, any object implementor will implemeantknown functions, and we are now in a position to look at them
in their precise terms.

.1 IUnknown Interface

IUnknown supports the capability of getting to other interfaces on the same object thpoerghterface. In addition, it
suppors the management of the existence of the interface instance thadorgt and Release. The following is the
definition of lunknown using the IDL notation; for details on the syntax of IDL see Chapté? 15.

[
object,
uuid(00000000-0000-0000-C000-000000000046),
pointer_default(unique)

interface IUnknown

HRESULT Queryinterface([in] REFIID iid, [out] void **ppV) ;
ULONG AddRef(void) ;
ULONG Release(void);

}
.1 IUnknown::Queryinterface

HRESULT IUnknown::QuerylInterface(iid, ppv)

Return a pointer within this object instance that implements the indicated interface. Answef the receiver does
not contain an implementation of the interface.

31 Though be aware that the use of the term GUID on page 587 is regreitakiig same as its usage in this specification. In this specification,
theterm @I D is used to refer to all identifiers that are fobonespe-oper abl e
cific centratauthority allocation scheme. Apologies to those who may be confused by this state of affairs.
%2 Throughout this document IDL notation is usedptecisely describe interfaces and other types. The actual IDL files contain additional IDL
specifies that are used by the IDL compiler to optimize the generation of marshaling code, but have no bearing onititertaztaaton-
tract.

DRAFT: October 24,1995 Page:65 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

It is required thaany query for the specific interfacenknown® always returns theame actual pointer valueno
matter through which interface derived fraomknown it is called. This enables the following identitiest algorithm
to determine whether two pointers in fact point to the same objectQaalinterface(lID_IUnknown, ...) on both and
compare the results.

In contrast, queries for interfacesher than iunknown arenot required to return the same actual pointer value each
time aQueryinterface returning one of them is called. This, among other things, enables sophisticated object imple-
mentors to free individual interfaces on their objects when theya@rbeing used, recreating them on demand (ref-
erence counting is a pérterface notion, as is explained further below). This requirement is the basis for what is
calledCOM identity.

It is required that the set of interfaces accessible on an objeQueignterface be static, not dynamic, in the follow-
ing precise sens¥. Suppose we have a pointer to an interface

ISomelnterface * psome = (some function returning an ISomelnterface *);
wherelSomelnterface derives fromiunknown. Suppose further that thellowing operation is attempted:

IOtherInterface * pother;
HRESULT hr;
hr=psome->Queryinterface(IID_lOtheriInterface, &pother); /lline 4

Then, the following must be true:

1 If hr==S_0K, then if theQueryinterfacei N Al i ne 40 i s a framethemdmesmepoineretbemnd t i me
S_OK must be answered again. This is independent of whether @othet->Release was called in the interim. In
short, if you can get to a pointer once, you can get to it again.

9 If hr==E_NOINTERFACE, then if theQueryinterface in line 4 is attempted a second time from the sasoee point-
er, thenE_NOINTERFACEMuU st be answered again. In short, i f you di
it later.

FurthermoreQuerylnterfacemust be reflexive, symmetric, amicinsitive with respect to the set of interfaces that are
accessible. That is, given the above definitions, then we have the following:

Symmetric: psome->Querylnterface(lID_ISomelnterface, ...) must succeed

Reflexive: If in line 4, pother was successfully obtained, then
pother->Querylinterface(IID_ISomelnterface, ...)
must succeed.

Transitive: If in line 4, pother was successfully obtained, and we do
IYetAnother * pyet;
pother->Querylinterface(IID_lYetAnother, &pyet); /lLine 7

andpyet is successfully obtained in line 7, then
pyet->Querylnterface(lID_ISomelnterface, ...)
must succeed.

Her e, Aimust succeedd means fAmust succeed barring catastr
not the case that tw@ueryinterface calls on the same pointer asking for the same interface must succeed and return
exactly the sampointer value(except in theunknown case as described previously).

Argument Type Description

iid REFIID The interface identifier desired.

ppv void** Pointerto the object with the desired interface. In the case that the interface is
not supported or another error occurrggy must be set talULL.

Return Value Meaning

S_OK Success. The interface is supported

E_NOINTERFACE The interface is not supported

E_UNEXPECTED An unknown error occurred.

3 That is, aQueryInterface invocation wheraid is 000000060000-0000-C000-000000000046.

34 While this set of rules may seem surprising to some, they are needed in order that remote access to interface pointeosidad béth a
reasonable degree of efficiency (withobist interface pointers could not be cached on a remote machine). FurtQareg$nterface forms
the fundamental architectural basis by which clients reason about the capabilities of an object with which they haveocuaat, istability is
needed tanake any sort of reasonable reasoning and capability discovery possible.

Copyright ©199295 Microsoft Corporation Page:66 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

.2 lUnknown::AddRef
ULONG IUnknown::AddRef(void)
Increments the reference count in this interface instance.

Objects implementations are required to support a certain minimum size for the counter that is internally maintained
by AddRef. In short, this counter must be at least 31 bits large. The precise rule is that the counter must be large
enough to support321 outstanding pointer references to all the interfaces on a given object taken as a whole. Just

make it a 32 bit unsigned integer, and youoll be fine.
Argument Type Description
return value ULONG The resulting value of the reference count. This valuetismed solely for di-

agnostic/testing purposes; it absolutely holds no meaning for release code since
in certain situations it is unstable

.3 lUnknown::Release
ULONG IUnknown::Release(void)
Release a reference to thigerface instance.

If AddRef has been called on this object (through &amknown members of its interfaces)times and this is thath
call toRelease, then the interface instance will free itself.

Release cannot indicate failure; if a client needskimow that resources have been freed etc., it must use a method in
some interface on the object with higher level semantics before calling release.

Argument Type Description

return value ULONG The resulting value of the reference count. This value ismetusolely for di-
agnostic/testing purposes; it only has meaning when the return is zero meaning
that the object cannot be considered valid in any way by the callerzBian
values are meaningless to the caller.

.2 Reference Counting

Objects accessed through interfaces use a reference counting mechanism to ensure that the lifetime of the object
includes the lifetime of references to it. This mechanism is adopted so that rlégpeomponents can obtain and
release access to a single object, and not have to coordinate with each other over the lifetime management. In a
sense, the object provides this management, so long as the client components conform to the rules. Witkin a sin
component that is completely under the control of a single development organization, clearly that organization can
adopt whatever strategy it chooses. The following rules are about how to manage and communicate interface in-
stances between componentsdare a reasonable starting point for a policy within a component.

Note that the reference counting paradigm applies only to pointers to interfaces; pointers to data are not referenced
counted.

It is important to be very clear on exactly when it is neagsto calladdref andRelease through an interface pointer.

By its nature, pointer management is a cooperative effort between separate pieces of code, which must all therefore
cooperate in order that the overall management of the pointer be correcbllberfg discussion should hopefully

clarify the rules as to whemddRef and Release need to be called in order that this may happen. Some special refer-
ence counting rules apply to objects which are aggregated; see the discussion of aggreGdiamber 6.

The conceptual model is the following: interface pointers are thought of as livipgimter variables, which for the
present discussion will include variables in memory locations and in internal processor registers, and will include
both programmerand compilergenerated variables. In short, it includes all internal computation $tatténdlds an
interface pointer. Assignment to or initialization of a pointer variable involves creatimgvacopyof an already

existing pointer: where there was one copy of the pointer in some variable (the value used in the assign-
ment/initialization), here is now two. An assignment to a pointer variat#stroysthe pointer copy presently in the
variable, as does the destruction of the variable itself (that is, the scope in which the variable is found, such as the
stack frame, is destroyed).

Rule 1: AddRef must be called for every new copy of an interface pointer,Rachse called every destruc-
tion of an interface pointer except where subsequent rules explicitly permit otherwise.

DRAFT: October 24,1995 Page:67 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

This is the default case. In short, unless special knowledge permitsvigbgethe worst case must be assumed. The
exceptions to Rule 1 all involve knowledge of the relationships of the lifetimes of two or more copies of an interface
pointer. In general, they fall into two categoriés.

ime »

Pointer Copy 1

Pointer Copy

Category 1. Nested lifetimes

ime »
Pointer Copy 1 >
. 2 R2
Pointer Copy -

Category 2. Staggered overlapping lifetimes

In Category 1 situations, theidRef A2 and theRelease R2 can be omitted, while in Category 2, A2 and R1 lean
eliminated.

Rule 2: Special knowledge on the part of a piece of code of the relationships of the beginnings and the end-
ings of the lifetimes of two or more copies of an interface pointer can allewef/Release pairs to be
omitted.

The following rulescall out specific common cases of Rule 2. The first two of these rules are particularly important,
as they are especially common.

Rule 2a In-parameters to functiondhe copy of an interface pointer which is passed as an actual parame-
ter to a function haa lifetime which is nested in that of the pointer used to initialize the value. The ac-
tual parameter therefore need not be separately reference counted.

Rule 2b: Out-parameters from functions, including return valughis is a Category 2 situation. Indsr to
set the out parameter, the function itself by Rule 1 must have a stable copy of the interface pointer. On
exit, the responsibility for releasing the pointer is transferred from the callee to the caller. The
out-parameter thus need not be separatefgrence counted.

Rule 2c Local variables.A function implementation clearly has omniscient knowledge of the lifetimes of
each of the pointer variables allocated on the stack frame. It can therefore use this knowledge to omit
redundantaddRef/Release pairs.

Rule 2d: Backpointers Some data structures are of the nature of containing two components, A and B, each
with a pointer to the other. If the lifetime of one component (A) is known to contain the lifetime of the
other (B), then the pointer from the sexl component back to the first (from B to A) need not be ref-
erence counted. Often, avoiding the cycle that would otherwise be created is important in maintaining
the appropriate deallocation behavior. However, such-neéerence counted pointers should tsed
with extreme cautioin particular, as the remoting infrastructure cannot know about the semantic rela-
tionship in use here, such backpointers cannot be remote references. In almost all cases, an alternative
design of having the backpointer refer@asend Afri endod object of the fi
(thus avoiding the circularity) is a superiour design. The following figure illustrates this coficept.

Objectl @ Object 2

friend of /.
Object 1 —Ov\\/

The following rules call out common neaxceptions to Rule 1.

% There are in fact more general casemnthilustrated here involving-way rather than 2vay interactions of matched AddRef / Release pairs,
but that will not be elaborated on here.
% The connection point interfaces introduced in the OLE Controls specification areveoreshexample of this concept.

Copyright ©199295 Microsoft Corporation Page:68 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

Rule la In-Outparameters to functionsThe caller mustaddref the actual parameter, since it will be
Released by the callee when the owalue is stored on top of it.

Rule 1b: Fetching a global variableThe local copy of the interface pointer fetched from an existing copy
of the pointer in a global variable must be independently reference counted sincduwatltémhs might
destroy the copy in the global while the local copy is still alive.

RulelcNew poi nters synt heAsfunaiendvhichsynthesizes dntinkeiface paintar uséo
ing special internal knowledge rather than obtaining it from sother source must do an initiatidRef
on the newly synthesized pointer. Important examples of such routines include instance creation rou-
tines, implementations ofinknown::Querylinterface, etc.

Rule 1d: Returning a copy of an internally stored point@&mnce the pointer has been returned, the callee has
no idea how its lifetime relates to that of the internally stored copy of the pointer. Thus, the callee must
call Addref on the pointer copy before returning it.

Finally, when implementing or using referenceo unt ed obj ect s, a techniqgqgue somet

I

count® someti mes proves useful. S u pFpodnsa@Me intertadantegfacewlfrinitiei ng t he

implementation ofFoo you invoke functions which have even the remotest chance of decrementing your reference
count, then such function may cause you to release before it returos fBhe subsequent code o will crash.

A robust way to protect yourself from this is to émsanAddRef at the beginning ofoo which is paired with a&elease
just beforeFoo returns:

void linterface::Foo(void) {

this®7->AddRef();

/*
* Body of Foo, as before, except short-circuit returns
* need to be changed.
*

this->Release();

return;

}

These fAartificial o6 reference counts guarantee object st

4 Error Codes and Error Handling

COM interface member functis and COM Library API functions use a specific convention for error codes in order

to pass back to the caller both a useful return value and along with an indication of status or error information. For
example, it is highly useful for a function to be elpe of returning a Boolean result (true or false) as well as indi-
cate failure or succedsreturning true and false means that the function executed successfully, and true or false is the
answer whereas an error code indicates the function failed completely

But before we get into error handling in COM, we ol | fi
dering about exceptions. How do exceptigakate to interfaces? In shoit,is strictly illegal to throw an exception

across an interface invocatigrall such crossnterface exceptions which are thrown are in faegsin the offending

interface implementation. Why have such a policy? The first, straightforward, pragmatic reason is the technical real-
ity that there simplyisht an ubiquitous exception model or semantic
operating systems that one could choose to permit; recall that location transparency and language independence are
important design goals of COM. Further, simplycis also an important design goal. It is wetiderstood that, quite

apart from COMper se the exceptions that may be legally thrown from a function implementation in the public
interface of an encapsulated module must necessarily from part of theatawftrdnat function implementation.

Thus, a thrown exception across such a boundary is merely an alternative mechanism by which values may be re-
turned from the function. In COM, we instead make use of the simpler, ubiquitous, aéeiatigg returavalue
mechanism for returning information from a function as our error reporting mechanism: simply re®RESI0. Ts,

which are the topic of this section.

This all being said, it would be absolutely perfectly reasonable for the implementor of a tool for usigiesnent-

ing COM interfaces to within the body of code managed by his tool turn errors returned from invoked COM inter-
faces into local exceptions and, conversely, to turn internally generated exceptions irt@teins across an inter-

face boundary. Tis is yet another example of the clear architectural difference that needs to be made between the

S AThiso is the AddRefio @nrobjectiraplememtatiorgusingahe approach of multiply inheriting from the etiiinterfaces
supported by the object; more complex implementation strategies will need to modify this appropriately.
DRAFT: October 24,1995 Page:69 Copyright © 199295 Microsoft Corporation

All Rights Reserved

a

on

t

The Component Object Model Specification The Component Object Model

rules and design of the underlying COM system architecture and the capabilities and design freedom afforded to
tools that support that architecture.

.1 HRESULT
The key type involved in COM error reportingigESULT.38 In addition, the COM Library provides a few functions
and macros to help applications of any kind deal with error informatiomRESULT is a simple32-bit value:

typedef LONG HRESULT;
An HRESULT is divided up into an internal structure that has four fields with the following format (numbers indicate
bit positions):

3322 11
1098 6 5 0
[s| R | Facility | Code |
S: (1 bit) Severity field:
0 SuccessThe function was successful; it behaved according to its proscribed semantics.
1 Error. The function failed due to an error condition.
R: (2 bits) Reserved for future use; must be set to zero by present prograeratgegyHRESULTS;
present code should not take action that relies on any particular bits being set or cleared this
field.

Facility: (13 bits) Indicates which group of status codes this belongs to. New facilities must be allocated
by a central coordinatinigody since they need to be universally uni§tiélowever, the need for
new facility codes is very small. Most cases can and shouldcFaGeITY_ITF. See the section
i Us eFAacalfY ITFO b el ow.

Code (16 bits) Describes what actually took place, error or otherwise.

COM presently defines the following facility codes

Facility Name Facility Description
Value
FACILITY_NULL 0 Used for broadly applicable oumon status codes that have no specific
grouping.S_OK belongs to this facility, for example.
FACILITY_ITF 4 Used for by far the majority of result codes that are returned from an inte

member function. Use of this facility indies that the meaning of the error
code is defined solely by the definition of the particular interface in questi
an HRESULT with exactly the same-8& value returned from another in-
terface might have a different meaning

FACILITY_RPC 1 Used for errors that result from an underlying remote procedure call impl
mentation. In general, this specification does not explicitly document the
errors that can be returned from functions, though they nevertheless can
returned in situatiomwhere the interface being used is in fact remoted

FACILITY_DISPATCH 2 Used forDispatch-interfacerelated status codes.

FACILITY_STORAGE 3 Used for persistergtoragerelated status codes. Status codes whose code
(lower 16 bits) value is in the range of DOS error codes (less than 256) h
the same meaning as the corresponding DOS error.

FACILITY_WIN32 7 Used to provié a means of mapping an error code from a function in the
Win32 API into arHRESULT. The semantically significant part of a Win32
error is 16 bits large.

FACILITY_WINDOWS 8 Used for additional error codes from Microsdftfined irierfaces.

FACILITY_CONTROL 10 Used for OLE Controlselated error values.

A particularHRESULT value by convention uses the following naming structure:

% The name AHRESULTO i s r et aidersfamilidraith prograsnmiagrGOM @n the \\éndasve plasfarm will noReehat
HRESULT is analogous to SCODE.
3 As of this writing, said body is Microsoft Corporation.

Copyright ©199295 Microsoft Corporation Page:70 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

<Facility>_<Sew_<Reasor

where <acility> is either the facility name or some other distinguishing identifi&gw= is a single letter, one of
the set { S, E } indicating the severity (success or error), deasor> is a short identifier that describes the mean-
ing of the code. Status codes MfioFACILITY_NULL omit the <acility>_ prefix. For example, the status code
E_NOMEMORY is the general oudf memory error. All codes have either or E_ in them allowing quick visual de-
termination if the code means success or failure.

The gener aHRESULBILINAmMEESSOX,0 meani ng fAeverything workedo as per
value of thisHRESULT is zero. In addition, as it is useful to have functions that can succeed but return Boolean re-

sults, the cods_FALSE is defined are success®dé i nt ended to mean Afunction wor ke:
#define S_OK 0
#define S_FALSE 1
A list of presentlydefined standard error codes and their semantics can be found in Appendix A.
From a general interface designpgeesct i v e, Afsuccessodo status codes shoul d be
seqguence of MAwhat happenedd in a method invocation is mi
looking at the outalues returned from the interface functiZwuLLpoi nt er s, et c. AErroro st a
contrast be used in situations where the function has p
bando processing in the client code, heonteiface implemdantatios wr i tt

truly did not behave in a manner under which normal client code can make normal forward progress. The distinction
is an imprecise and subtle one, and indeed many existing interface definitions do not for historical reasdns abide
this reasoning. However, with this approach, it becomes feasible to implement automated COM development tools
that appropriately turn the error codes into exceptions as was mentioned above.

Interface functions in general take the form:
HRESULT ISomelnteface::SomeFunction(ARG1_T argl, ... , ARGN_T argn, RET_T * pret);

Stylistically, what would otherwise be the return value is passed as avalug through the last argument of the

function. COM development tools which map error returns into exceptiogbtnailso consider mapping the last

argument of such a function containing onlyonepuar amet er i nto what the progr amme:
of the method invocation.

The COM remoting infrastructure only supports reporting of Rifticed errors (sth as communication failures)
through interface member functions that retdRESULTs. For interface member functions of other return types (e.g.:
void), such errors are silently discarded. To do otherwise would, to say the least, significantly coniptiabie
remote transparency.

.1 Use of FACILITY_ITF

The use oFACILITY_ITF deserves some special discussion with respect to interfaces defined in COM and interfaces
that will be defined in the future. Where as status codes with other facilAsL(TY_NULL, FACILITY_RPC, etc.)

have universal meaning, status codesATILITY_ITF have their meaning completely determined by the interface
member function (or API function) frormhich they are returnedhe same 3dit value inFACILITY_ITF returned

from two different interface functions may have completely different meanings

The reasoning behind this distinction is as follows. For reasons of efficiency, it is unreasonable thehprmary

error code data typeHRESULT) be larger than 32 bits in size. 32 bits is not large enough, unfortunately, to enable
COM to develop an allocation policy for error codes that will universally avoid conflict between codes allocated by
differentnonrcommunicating programmers at different times in different places (contrast, for instance, with what is
done with IIDs and CLSIDs). Therefore, COM structures the use of the 32 bit SCODE in such a way so as to allow
the a central coordinating botfyto definesomeuniversally defined error codes while at the same time allowing
other programmers to define new error codes without fear of conflict by limiting the places in which those
field-defined eror codes can be used. Thus:

1. Status codes in facilities other theacILITY_ITF can only be defined by the central coordinating body.

2. Status codes in facilitgACILITY_ITF are defined solely by theefiner of the interfacer API by which
said status code is returned. That is, in order to avoid conflicting error codes, a human being needs to
coordinate the assignment of codes in this facility, and we state that he who defines the interface gets to
do the coordination.

40 As of this writing, said body is Microsoft Corporation.

DRAFT: October 24,1995 Page:71 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

COM itself defines a number of interfaces and APIs, and so COM defines many status cedesliry_ITF. By
design, none of the COMefined status codes in fact have the same value, even if returned by different interfaces,
though it would have been legal f6OM to do otherwise.

Likewise, it is possible (though not required) for designers of COM interface suites to coordinate the error codes
across the interfaces in that suite so as to avoid duplication. The designers of the OLE 2 interface suite, fgr example
ensured such lack of duplication.

Thus, with regard to which errors can be returned by which interface functions, it is the case that, in the extreme,

1 It is legal that any COMilefinederror code may in fact be returned by any C@aldfined interface
member function or API function. This includes errors presently defineda@iLITY_ITF. Further,
COM may in the future define new failure codes (but swwtcesscodes) that may also be so ubiqui-
tously returned.

Designers of interface suites may if they wish choose to provide similar rules across the interfaces in
their suites.

1 Further, anyerror in FACILITY_RPC or other facility, even those errors not presentlyirdel, may be
returned.

Clients must treat error codes that are unknown to them as synonymou&_wWBXPECTED, which in general

should be and is presently a legal error return value from each and every interface member function in all interfaces;
interface designers and implementaaise responsible to insuréhat any newly defined error codes they should
choose to invent or return will be such that that existing clients with code treating generic cases as synonymous with
E_UNEXPECTED this will have reasoable behavior.

In short, if you know the function you invoked, you know as a client how to unambiguously take action on any error
code you receive. The interface implementor is responsible for maintaining your ability to do same.

Normally, of course, onlya small subset of the COJdefined status codes will be usefully returned by a given inter-
face function or API, but the immediately preceding statements are in fact the actual interoperability rules for the
COM-defined interfaces. This specification endesvio point out which error codes are particularly useful for each
function, but code must be written to correctly handle the general rule.

The present document is, however, precise as to whichestodes may legally be returned.

Conversely, it ioonly legal to return a status code from the implementation of an interface member function which
has been sanctioned by the designer of that interface as being legally returnable; otherwise, there is the possibility of
conflict between these returned code edwand the codes-iiact sanctioned by the interface designer. Pay particular
attention to this when propagating errors from internally called functions. Nevertheless, as noted above, callers of
interfaces must to guard themselves from imprecise inteifaptementations by treating any otherwise unknown
returned error code (in contrast with success code) as synonymous WitlEXPECTED: experience shows that
programmers are notoriously lax in dealing with error handling. Further, given the third butieapoie, this cod-

ing practice igequiredby clients of the COMlefined interfaces and APIs. Pragmatically speaking, however, this is
little burden to programmers: normal practice is to handle a few special error codes specially, but treat the rest ge-
nerically.

All the COM-definedFACILITY_ITF codes will, in fact, have aodevalue which lies in the regioox0000 8 0x01FF.
Thus, while it is indeed legal for the definer of a new function or interface to make use of any cbdesIiny_ITF

that he chooseis any way he sees fit, it is highly recommended that @olgevalues in the rangex0200 8 OxFFFF

be used, as this will reduce the possibility of accidental confusion with any-@€iivled errors. It is also highly
recommended that designers of new fuoresi and interfaces consider defining as legal that most if not all of their
functions can return the appropriate status codes defined by COM in facilities otherrAlcanTy_ITF.
E_UNEXPECTED is a specific error code that most if not all interface defneill wish to make universally legal.

.2 COM Library Error-Related Macros and Functions
The following macros and functierare defined in the COM Library include files to manipulate status code values.

#define SEVERITY_SUCCESS 0
#define SEVERITY_ERROR 1
#define SUCCEEDED (Status) ((HRESULT)(Status) >= 0)
#define FAILED(Status) ((HRESULT)(Status)<0)
#define HRESULT_CODE(hr) ((hr) & OXFFFF)
Copyright ©199295 Microsoft Corporation Page:72 DRAFT: October 24,1995

All Rights Reserved

The Component Object Model The Component Object Model Specification

#define HRESULT_FACILITY (hr) (((hr) >> 16) & OXLfff)
#define HRESULT_SEVERITY (hr) (((hr) >> 31) & Ox1)

#define MAKE_HRESULT (sev,fac,code) \
((HRESULT) (((unsigned long)(sev)<<31) | ((unsigned long)(fac)<<16) | ((unsigned long)(code))))
.1 SUCCEEDED

SUCCEEDED(HRESULT Status)

The SUCCEEDED macro returns TRUE if the severity of the status code is either success or information; otherwise,
FALSE is returned.

.2 FAILED

FAILED(HRESULT Status)

The FAILED macro returnsTRUE if the severity of the status code is either a warning or error; otherlRA=eSE
is returned.

.3 HRESULT_CODE

HRESULT_CODEMHRESULT h)
HRESULT_CODE returns the error code pliom a specified status code.

.4 HRESULT_FACILITY
HRESULT_FACILITY(HRESULT hj)
HRESULT_FACILITY extracts the facility from a specified status code.

.5 HRESULT_SEVERITY

HRESULT_SEVERITY(HRESUT hr)
HRESULT_SEVERITY extracts the severity field from the specified status code.

.6 MAKE_HRESULT

MAKE_HRESULT(SEVERITY sev,FACILITY fac, HRESULT hr)
MAKE_HRESULT makes a new status code given a severity, a facility, aratus stode.

5 Enumerators and Enumerator Interfaces

A frequent programming task is that of iterating through a sequence of item&QWeinterfaces are no exception:

there are places in several interfaces described in this specification where a client of some object needs to iterate
through a sequence of items controlled by t heenumbrg-ect . CC
tor objects. 0 Enumerators <cleanly separate the <caller o
knowledge of how to accomplish that function.

Enumerators are just a concept; there is no actual interface @aileckrator or IEnum or the like. This is due to the

fact that the function signatures in an enumerator interface must include the type of the things that the enumerator
enumerates. As a consequence, separate interfaces exist for each kind of thing that can be enumeratedthdowever
difference in the type being enumerated is ¢inéy difference between each of these interfaces; they are all used in
fundament ally the same way. ovérthe eeambn type.Whisgddcamenttdbseripesthe e N g e
semantics of enumerators using a generic interfacen and the C++ parameterized type syntax where ELT_T,

whi ch stEHemtd TY p# & representative of the type involved in the enumeration:

[
object,
uuid(<lID_IEnum <ELT_T>>), // ID_IEnum<ELT_T>
pointer_default(unique)

]

“hHhelto by itself in the function prototypes is just felemento

DRAFT: October 24,1995 Page:73 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

interface IENUmM<ELT_T> : IUnknown

{
HRESULT Next([in] ULONG celt, [out] IlUnknown **rgelt, [out] ULONG *pceltFetched);
HRESULT Skip([in] ULONG celt);
HRESULT Reset(void);
HRESULT Clone([out] IEnum<ELT_T>**ppenum);
}

A typical use of an enumerator is the following.

/| / Somewhere therebds a type called AStringbo
typedef char * String;

/lnterface defined using template syntax
typedef IEnum<char *> |EnumString;

interface IStringManager {
virtual IEnumString* EnumStrings(void) = 0;

}

void SomeFunc(IStringManager * pStringMan) {
char * psz;
IEnumString * penum;
penum=pStringMan->EnumStrings();
while (S_OK==penum->Next(1, &psz, NULL))

/IDo something with the string in psz and free it

penum->Release();
return;

}

.1 IEnum::Next
HRESULT IEnum::Next(celt, rgelt, pceltFetched)

Attempt to get the nexelt items in the enumeration sequence, and return them through the array pointeddio by

If fewer than the requested number of elements remain in the sequence, then just eetemmaihing ones; the actu-

al number of elements returned is passed thropgitrFetched (unless it is NULL). If the requeste@it elements are

in fact returned, then returd OK; otherwise returrs_FALSE. An error condition onwher t
el ement s | ef 3$coODEwhich is a failere coderratharthan one of these two success values.

To clarify:

1 If s_oK isreturned, then on exit the aHit elements requested are valid and returnedein

1 If S_FALSE is returned, then oexit only the first*pceltFetched entries ofrgelt are valid. The contents of the re-
maining entries in thegelt array are indeterminate.

9 If an error value is returned, then on exit no entries inrgbe array are valid; they arall in an indeterminat

state.
Argument Type Description
celt ULONG The number of elements that are to be returned.
rgelt42 ELT_T* An array of size at leasetlt in which the next elements are to be returned.
pceltFetched ULONG* May beNuULL if celt is one. If noANULL, then this is set with the number of ele-
ments actually returned iget.
Return Value Meaning
S_OK Success. The requested number of elements were returned.
S_FALSE Success. Fewer than the regiggl number of elements were returned.
E_UNEXPECTED An unknown error occurred.
2 Think of fArgelto as short for fArange of elto, signifying an array.
Copyright ©199295 Microsoft Corporation Page:74 DRAFT: October 24,1995

All Rights Reserved

h a

The Component Object Model The Component Object Model Specification

.2 |IEnum::Skip

HRESULT IEnum::Skip(celt)

Attempt to skip over the nexklt elements in the enumeration sequence. Resuox if this was accomplished, or
S_FALSE ifthe end of the sequence was reached first.

Argument Type Description

celt ULONG The number of elements that are to be skipped.

Return Value Meaning

S_OK Success. The requested number of elements were skipped.

S_FALSE Success. Some skipping was done, but the end of the sequence was hit b
the requested number of elements could be skipped.

E_UNEXPECTED An unknown error occurred.

.3 IEnum::Reset

HRESULT IEnum::Reset(void)

Rest the enumeration sequence back to the beginning.

Note that there is no intrinsic guarantee tagactlythe same set of objects will be enumerated the second time as
was enumerated the first. Though clearly very desirable, whether this is the casésadepEndent on the collection
being enumerated; some collections will simply find it too expensive to maintain this condition. Consider enumerat-
ing the files in a directory, for example, while concurrent users may be making changes.

Return Value Meaning
S_OK Success. The enumeration was reset to its beginning.
E_UNEXPECTED An unknown error occurred.

.4 |IEnum::Clone

HRESULT IEnum::Clone(ppenum)

Return another enumerator which contains exactly the same enumerat®rastihis one. Using this function, a
client can remember a particular point in the enumeration sequence, then return to it at a later time. Notice that the
enumerator returned is of the same actual interface as the one which is being cloned.

Caveats sinhar to the ones found iEnum::Reset regarding enumerating the same sequence twice apply here as well.

Argument Type Description

ppenum IEnum<ELT_T>** The place in which to return the clone enumerator.
Return Value Meaning

S_OK Success. The enumeration was reset to its beginning.
E_UNEXPECTED An unknown error occurred.

6 Designing and Implementing Objects

Objects can come in all shapes and sizes and applications will implement objects for various purposes with or with-
out assigning the class@.sib. COM servers implement objects for the sake of serving them to clients. In some
cases, such as data changsfiwattion, a client itself will implement a classless object to essentially provide callback
functions for the server object.

In all cases there is only one requirement for all objects: implement at leashthewn interface. An object is not a
COM object unless it implements at least one interface which at minimuionksown. Not all objects even need a
unique identifier, that is, aLsID. In fact,only those objects that wish to allow COM to locate and launch their im-
plementations really needcasip. All other objects do not.

Ilunknown implemented by itself can be useful for objects that simply represent the existence of some resource and
control t hat resourceb6s | ifetime without providing any
however, most interesting objects will want to provide more services, that is, additional interfaces through which to
manipulate the object. This all depends on the purpose of the object and the context in which clients (or whatever
other agents) use it. Thabject may wish to provide some data exchange capabilities by implemepdiagbject, or

may wish to indicate the contract through whi apbrsisti t can
flavors of interfaces. If the object is a moaikit will implement an interface callesionikert hat we 61l | see in
DRAFT: October 24,1995 Page:75 Copyright © 199295 Microsoft Corporation

All Rights Reserved

The Component Object Model Specification The Component Object Model

9. Objects that are used specifically for handling remote procedure calls implement a number of specialized interfac-
es themselves as webdll see in Chapter 7.

The bottom line is thayou decide what functionality the object should have and implement the interface that repre-
sents that functionality. In some cases there are no standard interfaces that contain the desired functionality in which
case you will want to design a custom ifigee. You may need to provide for remoting that interface as described in
Chapter 7.

The following chapters that discuss COM clients and servers use as an example an object class designed to render
ASCII text information from text stored in files. This joke c t cl asmxtRander0 ca h ¢l e éctsii dfa s a
{12345678-ABCD-1234-5678-9ABCDEF00000}*® defined as the symbalLsID_TextRender in some include file. Note again

that an object class does not have to have an associetenl This example has one so we can use it to demonstrate
COM clients and servers in Chapters 5 and 6.

TheTextRender object can read and write text &nd from a file, and so implements tRersistFile interface to support

those operations. An object can be initialized (see Cha
throughiPersistFile::Load. The object class also supports reridg the text data into straight text as well as graphically

as metafiles and bitmaps. Rendering capabilities are handled througtattttbject interface, andbataObject::SetData

when given text forms a second initializing functi¥nThe operation ofrextRender objects isillustrated in Figure

3-4:

IDataObject ()

Objec

IPersistFile O

————d
Figure 3-4: An object with IDataObjectand IPersistFile Interfaces.

The fAObject Reusabilityodo section of Chapter 6 wil/l show
that providessome the desired functionality is available for reuse. But for now, we want to see how to implement
this object on its own.

.1 Implementing Interfaces: Multiple Inheritance

There are two different strategies for implementing interfaces on an object: multiple inheritance and interface con-
tai nment . Which method wor ks best for you depends first
have an inheritance notionmaot support multiple inheritance, obviously) but if you are implementing an object in

C++, which is a common occurrence, your choice depends on the object design itself.

Multiple inheritance works best for most objects. Declaring an object in this marigkt appear as follows:
class CTextRender : public IDataObject, public IPersistFile {

private:
ULONG m_cRef; /IReference Count
char * m_pszText; /IPointer to allocated text
ULONG m_cchText; /INumber of characters in m_pszText

/IOther internal member functions here

public:
[Constructor, Destructor]

/*
* We must override all interface member functions we
* inherit to create an instantiatable class.
*/

/NUnknown members shared between IDataObject and IPersistFile
HRESULT Querylnterface(REFIID iid, void ** ppv);

ULONG AddRef(void);

ULONG Release(void);

/lIDataObject Members overrides
HRESULT GetData(FORAMTETC *pFE, STGMEDIUM *pSTM);
[Other members]

4 Do not use this CLSID for your own purposiss simply an example. See the section "Identifying and Registering the Object" below.
4 In other wordsthe client may initialize the object by telling it to read text from a file or by handing text{ouiih iDataobject::Setbata. Either
way, the object now has some text to render graphically or to save to a file.

Copyright ©199295 Microsoft Corporation Page:76 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

/l\PersistFile Member overrides
HRESULT Load(char * pszFile, DWORD grfMode);
[Other members]

h

This object class inherits from the interfaces it wishes to implement, declares whatever variables are necessary for
maintaining the object state, and overrides all the member function$ iohatited interfaces, remembering to in-

clude thelunknown members that are present in all other interfaces. The implementation of the Giegleterface

function of this object would use typecasts to return pointers to different vtbl pointers:

HRESULT CTextRender::Queryinterface(REFIID iid, void ** ppv) {
*ppv=NULL;

/[This code assumes an overloaded == operator for GUIDs exists
if (IID_IUnknown==iid)
*ppv=(void *)(IUnknown *)this;

if (IID_IPersitFile==iid)
*ppv=(void *)(IPersistFile *)this;

if (IID_IDataObject==iid)
*ppv=(void *)(IDataObject *)this;

if (NULL==*ppv)

return E_NOINTERFACE; /fiid not supported.
/'l Any call to anyonedéds AddRef is our own, so we can just call ¢t
AddRef();
return NOERROR,;

}

This technique has the advantage that all the implementation of all interfaces is gathered together in the same object
and all functions have quick and direct access to all the other members of this object. In addition, there only needs to
be one implementan of thelunknown members. However, when we deal with aggregation in Chapter 6 we will see
how an object might needseparatemplementation ofunknown by itself.

.2 Implementing Interfaces: Interface Contaiment

There are at times reasons why you may not want to use multiple inheritance for an object implementation. First, you
may not be using C++. That aside, you may want to individually track reference counts omteafeite separate

from the overall object for debugging or for resource management puépost&sence counting is from a client
perspective an interfaegpecific operation. This can uncover problems in a client you might also be developing,
exposing situabns where the client is callingddref through one interface but matching it withRalease call

through a different interface. The third reason that you would use a different method of implementation is when you
have two interfaces with the same memherction names with possibly identical function signatures or when you
want to avoid function overloading. For example, if you wanted to implenmsnsistFile, IPersistStorage, and
IPersistStream on an object, you would have to write overloaded functiarstlie Load and Save members of each

which might get confusing. Worse, if two interface designers should happen to define interfaces that have
likeenamed methods with |ike parameter |ists but i ncompatilb
separate functions need to be implemented, but C++ unifies the two method definitions. Note that as in general in-
terfaces may be defined by independent parties that do not communicate with each other, such situations are inevita-
ble.

The other implementaton met hod i s to use fAinterface i mplementatior
inherit from and implement one interface. The real object itself singly inherits ifsekrown and maintains (or con-
tains) pointers to each interface implementatioat tit creates on initialization. This keeps all the interfaces separate
and distinct. An example of code that uses the containment policy follows:
class ClmplPersistFile : public IPersistFile {

private:
ULONG m_cRef; llinterface reference count for debugging

/["Backpointer" to the actual object.
class CTextRender * m_pObj;

DRAFT: October 24,1995 Page:77 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

public:
[Constructor, Destructor]

/IUnknown members for IPersistFile

HRESULT Querylnterface(REFIID iid, void ** ppv);
ULONG AddRef(void);

ULONG Release(void);

/lPersistFile Member overrides
HRESULT Load(char * pszFile, DWORD grfMode);
[Other members]

}

class CimplDataObject : public IDataObject
private:
ULONG m_cRef; llinterface reference count for debugging

/["Backpointer" to the actual object.
class CTextRender * m_pObj;

public:
[Constructor, Destructor]

/NUnknown members for IDataObject

HRESULT Querylnterface(REFIID iid, void ** ppv);
ULONG AddRef(void);

ULONG Release(void);

/lIPersistFile Member overrides
HRESULT GetData(FORMATETC *pFE,STGMEDIUM *pSTM);
[Other members]

class CTextRender : public lUnknown

{
friend class ClmplDataObject;
friend class ClmplPersistFile;

private:
ULONG m_cRef; /IReference Count
char * m_pszText; /IPointer to allocated text
ULONG m_cchText; /INumber of characters in m_pszText

/[Contained interface implementations
CimplPersistFile * m_plmplPersistFile;
ClimplDataObject* m_plmplDataObject;

/[Other internal member functions here

public:
[Constructor, Destructor]

HRESULT Querylnterface(REFIID iid, void ** ppv);
ULONG AddRef(void);
ULONG Release(void);

h

In this technique, each interface implementation must maintain a backpointer to the real object in order to access that
objectés variables (normally this is passed i rfrierdhe inte
relationship (in C+} between the object classes; alternatively, these friend classes can be implemented as nested
classes irCTextRender.

Notice that thaunknown member functions of each interface implementation do not need to do anything more than
delegate directly to theunknown functions implemented on the€TextRender object. The implementation of
Querylnterface on the main object would appear as follows:

HRESULT CTextRender::Queryinterface(REFIID iid, void ** ppv)

Copyright ©199295 Microsoft Corporation Page:78 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

{
*ppv=NULL;

/[This code assumes an overloaded == operator for GUIDs exists
if (IID_lUnknown==iid)
*ppv=(void *)(IUnknown *)this;

if (IID_IPersitFile==iid)
*ppv=(void *)(IPersistFile *)m_plmplPersistFile;

if (IID_IDataObject==iid)
*ppv=(void *)(IDataObject *)m_pImplDataObiject;

if (NULL==*ppv)
return E_NOINTERFACE; /liid not supported.

/ICall AddRef through the returned interface
((IUnknown *)ppv)->AddRef();
return NOERROR,;

}

This sort of del egation structur e Iumendwvermembets tovsenteyothee asy t o
IUnknown, which is necessary in supporting aggregation as explained in Chapter 6. But overall the implementation is

not much different than multiple inheritance and both methods work equally well. Containment of interface imple-
mentaton is more easily translatable into C where classes simply become equivalent structures, if for any reason

such readability is desirable (such as making the source code more comprehensible to C programmers who do not
know C++ and do not understand multipteritance). In the end it really all depends upon your preferences and

has no significant impact on performance nor development.

DRAFT: October 24,1995 Page:79 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

This page intentionally left blan

Copyright ©199295 Microsoft Corporation Page:80 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

4. COM Applications

All applications, that is, running programs that define a task or a process be they client or servers, have specific re-
sponsibilities. This chapter examines the roles and responsibilities of all COM applicatiotteearetessary COM
library support functions for those responsibilities.

In short, any application that makes use of COM, client or server, has three specific responsibilities to insure proper
operation with other components:
1. On application startup, vify that the COM Library version is new enough to support the functionality expected
by the application. In general, an application can use an updated version of the library but not an older one or
one that has undergone a major version change.

2. On applcation startup, initialize the COM Library.

3. On application shutdown, uninitialize the COM Library to allow it to free resources and perform any cleanup
operations as necessary.

Each of these responsibilities requires support from the COM Library é@salttailed in the following sections. For
convenience, initialization and uninitialization are described together. Additional COM Library functions related to
initialization and memory management are also given in this chapter.

1 Verifying the COM Library Version

The COM Library defines a major version number and a minorioensumber and provide these in a header file
that is compiled with the COM application. Any application must then compare these compiled numbers with the
version of the available library and if the available library is incompatible the application aasen@OM. Similar-

ly, a DLL should check the library version in its initialization code and fail loading if the library is incompatible or
otherwise disable its COM functionality. The current major and minor version numbers are retrieved from COM
Library with the functionCoBuildversion.

.1 CoBuildVersion

DWORD CoBuildVersion(void)

Return the major and the minor version number of the Component Object Model library.
Argument Type Description

return value DWORD A 32 bit value whose higlorder 16 bits are the major version numbein{() and
whose loworder 16 bits are the minor version numbep)(

An application or DLL can run against only one major version of the CObMaly but can run against any minor
version (possibly disabling specific minor features that are not available in a builds before a given minor number).
Therefore during startup (initialization for DLLSs), all COM applications must include code similae t@llowing:

DWORD dwBuildVersion;
dwBuildVersion=CoBuildVersion();
if (HIWORD(dwBuildVersion)!=rmm)
/'l Error: Can6t run against wrong major version
if LOWORD (dwBuildVersion) < rup)
/IDisable features dependent on the rup version of COM (or simply fail)
/IContinue initialization

2 Library Initialization / Uninitialization

Once the application has determined that it can run against the currently available version of the COM Library, it
must initialize the library through a function calledinitialize. Calls made t@olnitialize must be matched with calls to
CoUninitialize to allow the COM Library to perform any final cleanup.

.1 Colnitialize

HRESULT Colnitialize(pReserved)

Initialize the Common Object Model library so that it can be used. With the except@mBafiversion, this functio
must be called by applications before any other function in the library. Calisititialize must be balanced by cor-

DRAFT: October 24,1995 Page:81 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

responding calls t@ouUninitialize. Typically, Colnitialize is called only once by the process that wants to use the COM
library, althowgh multiple calls can be made. Subsequent calttuaitialize return S_FALSE.

Argument Type Description

pReserved void* Reserved for future use. Presently, musibeL.

Return Value Meaning

S_OK Success. Initialization has succeeded. This was tharfititlization call in
this process.

S_FALSE Success. Initialization has succeeded, but this was not the first initializatio
call in this process.

E_UNEXPECTED An unknown error occurred.

.2 CoUninitialize
void CoUninitialize (void)

Shuts down the Component Object Model library, thus freeing any resources that it maintain€oitigiee and
CoUninitialize calls must be balanced, only theuninitialize call that corresponds to tteinitialize call that actubhy did
the initialization will uninitialize the library.

3 Memory Management

As was articulated earlier in this specification, when ownership of allocated memory is passed through an interface,

COM require$t hat the memory be allocated with a specific At a
task allocator is provided through thealloc interface instance returned froovGetMalloc. Simple shortcut allocation

and freeing APIs are also provided in the forntefaskMemAlloc andCoTaskMemFree.

.1 IMalloc Interface

The IMalloc interface is an abstraction of familiar memelocation primitives that fit into the COM interface
model. Like all other interface, it is derived fromnknown and correspondingly includes tia@dRef, Release, and
Queryinterface member functions. The first thremalloc-specificfunctions in this interface are merely simple abstrac-
tions of the familiar Gibrary functionsmalloc, realloc, andfree.

[

local,
object,
uuid(00000002-0000-0000-C000-000000000046)

interface IMalloc : lUnknown {
void * Alloc([in] ULONG cb);
void * Realloc([in] void * pv, [in] ULONG ch);

void Free([in] void* pv);
ULONG GetSize([in] void * pv);
int DidAlloc([in] void * pv);
void HeapMinimize(void);

h

.1 IMalloc::Alloc

void * IMalloc::Alloc(cb)

Allocate a memory block of at least bytes. The initial contents of the returned memory block are undefined. Spe-
cifically, it is not guaranteed that the block is zedo The block actually allocated may be larger thabytes be-
cause of space required for alignment and for maintenance informatiemnisID, Alloc allocates a zertength item

and returns a valid pointer to that item. This function returns NULL if there is insufficient memory available.

Callers must always check the return from the this function, even if the amount of memory requested is small.

4 In general, though, precisely, one can invent interfaces which choose to violate this rule. Howeveresdackesrre, for example, unlikely to
have their remoting proxies and stubs generated with common tools.

Copyright ©199295 Microsoft Corporation Page:82 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

Argument Type Description
cb ULONG The number of bytes to allocate.
return value void * The allocated memory block, or NULL if insufficient memory exists.

.2 IMalloc::Free

void IMalloc::Free(pv)

Deallocate a memory block.h® pv argument points to a memory block previously allocated through a call to
IMalloc::Alloc Or IMalloc::Realloc. The number of bytes freed is the number of bytes with which the block was originally
allocated (or reallocated, in the caseredlioc). After the call, thepv parameter is invalid, and can no longer be used.
pv may be NULL, in which case this function is a-ap.

Argument Type Description

pv void * Pointer to the block to free. May be NULL.

.3 IMalloc::Realloc

void * IMalloc::Realloc(pv, cb)

Change the size of a previously allocated memory block. ptfhergument points to the beginning of the memory
block. If pvis NULL, Realloc functions in the same way &8alloc::Alloc and allocates a new block of tiytes. Ifpvis
not NULL, it should be a pointer returned by a prior caliMalloc::Alloc.

Thecb argument gives the new size of the block in bytes. The contents of the block are unchanged up to the shorter
of the new and old sizes, although the new klaowy be in a different location. Because the new block can be in a
new memory location, the pointer returnedralioc is not guaranteed to be the pointer passed throughvthiegu-

ment. Ifpvis not NULL andcbis 0, then the memory pointed to pyis freed.

Realloc returns a void pointer to the reallocated (and possibly moved) memory block. The return value is NULL if the
size is zero and the buffer argument is not NULL, or if there is not enough available memory to expand the block to
the given sizeln the first case, the original block is freed. In the second, the original block is unchanged.

The storage space pointed to by the return value is guaranteed to be suitably aligned for storage of any type of object.
To get a pointer to a type other thamid;, use a type cast on the return value.

Argument Type Description

pv void * Pointer to the block to reallocate. May be NULL.
cb ULONG The new size in bytes to allocate. May be zero.
return value void * The reallocated memory block, or NULL.

.4 IMalloc::GetSize

ULONG IMalloc::GetSize(pv)

Return the size, in bytes, of the memory block allocated by a previous eslika::Alloc or IMalloc::Realloc on this
memory manager.

Argument Type Description
pv void * Thepointer to be tested. May baiLL, in which casel is returned.
return value ULONG The size of the allocated memory block

.5 IMalloc::DidAlloc

int IMalloc::DidAlloc(pv)

This function answers as whether or not the indicated memory peintesis allocated by the given allocator, if the
allocator is able to determine that fact (many memory allocators will not be able to do so).

The values 1 (one) and O (zero) arereturredaidi d al l oc0 and Adi d -n(mihusane)lisoc o ans
returned if thamalloc implementation is unable to determine whether it allocated the pointer or not.

DRAFT: October 24,1995 Page:83 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

Argument Type Description
pv void * The pointer to be tested. May heLL, in which case1 is returned.
return value int -1,0,1

.6 IMalloc::HeapMinimize

void IMalloc::HeapMinimize()

Minimize the heap as much as possible for this allocator by, for example, releasing unused memdrgap tioethe
operating system. This is useful in cases when a lot of allocations have been freedMaisingree) and the appli-
cation wants to release the freed memory back to the operating system so that it is available for other purposes.

.2 COM Library Memory Management Functions

.1 CoGetMalloc

HRESULT CoGetMalloc(dwMemContext, ppMalloc)

This function retrieves fronthe COM library either the task memory allocator an optionptiyvided shared
memory allocator. The particular allocator of interest is indicated byitivemcContext parameter. Legal values for
this parameter are taken from the enumeratigrnCcTX:

typedef enum tagMEMCTX {

MEMCTX_TASK =1, /I task (private) memory
MEMCTX_SHARED = 2, /I shared memory (between processes)
MEMCTX_MACSYSTEM = 3, /l on the mac, the system heap
/I these are mostly for internal use...
MEMCTX_UNKNOWN = -1, /I unknown context (when asked about it)
MEMCTX_SAME = -2, /I same context (as some other pointer)

} MEMCTX;

MEMCTX_TASK returns the task allocator. folnitialize has not yet been calleduLL we be stored irppMalloc and
CO_E_NOTINITIALIZED returned from the function.

MEMCTX_SHARED returns an optionallprovided shared allocator; if the shared allocator is not supported,
E_INVALIDARG is returned. When supported etishared allocator returned by this function is an G@wvided im-
plementation ofmalloc interface, one which allocates memory in such a way that it can be accessed by other process
on the current machine simply by conveying the pointer to said apphsgfid-urther, memory allocated by this
shared allocator in one application may be freed by the shared allocator in another. ExceptNvbhempainter is
passed, the shared memory allocator never answetsimMalloc::DidAlloc; it always indicates that either did or did not
allocate the passed pointer.

Argument Type Description

dwMemContext ~ DWORD A value from the enumerationEMCTX.

ppMalloc IMalloc ** The place in which the memory allocator should be returned.
Return Value Meaning

S_OK Success. The requested allocator was returned.
CO_E_NOTINITIALIZED The COM library has not been initialized.

E_INVALIDARG An invalid argument was passed.

E_UNEXPECTED An unknown error occurred.

.2 CoGetCurrentProcess

DWORD CoGetCurrentProcess(void)

Return avalue unigue to the current process. More precisely, return a value unique to the current process to the de-
gree that it will not be reused untit®Xurther processes have been created on the current workstation.

4 That is, the memory resides at the same address in all processes.

Copyright ©199295 Microsoft Corporation Page:84 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model

Argument Type

The Component Object Model Specification

Description

return value DWORD

.3 CoTaskMemAlloc
LPVOID CoTaskMemAlloc(cb)

A value unique to the current process.

Semantically identical to retrieving the current task allocator witGetMalloc, invoking IMalloc::Alloc on that pointer
with the same paramets, then releasing thiaalloc pointer.

Argument Type

Description

cb ULONG
return value void *

.4 CoTaskMemFree
void CoTaskMemFree(pv)

The number of bytes to allocate.

The allocated memory block, aluLL if insufficient memory exists.

Semantically identical to retrieving the current task allocator wiBetMalloc, invoking IMalloc::Free on that pointer
with the same parameters, then releasingnfaéoc pointer.

Argument Type

Description

pv void *

.5 CoTaskMemRealloc
void CoTaskMemRealloc(pv, cb)

Pointer to theblock to free. May be&lULL.

Semantically identical to retrieving the current task allocator withetMalloc, invoking IMalloc::Realloc on that point-
er with the same paramesethen releasing th®alloc pointer.

Argument Type Description

pv void * Pointer to the block to reallocate. May ReLL.

cb ULONG The new size in bytes to allocate. May be zero.
return value void * The reallocated memory block, NULL.

4 Memory Allocation Example

An object may need to pass memory between it and the tlie at s o me

in-process as well as ocof-process servers. When such a situation arises the object must use the task allocator as

poi nt OJithis apphestoo bj ect ¢

described in Chapter 2. That is, the object must allocate memory whose owrigrshipsferred from one party to
another through an interface function by using the local task allocator.

CoGetMalloc provides a convenient way for objects to allocate working memory as well. For example, when the
TextRendero b j ect (see Chgpaed BmphA®mengnng

Object so)

under

text from a file in the functiorPersistFile::Load (that is,CTextRender::Load) it will want to make a memory copy of that
text. It would use the task allocator for this purposdlastiated in the following code (unnecessary details of open-
ing files and reading data are omitted for simplicity):

/Nmplementation of IPersistFile::Load
HRESULT CTextRender::Load(char *pszFile, DWORD grfMode) {

int hFile;
DWORD cch;
IMalloc * pIMalloc;
HRESULT hr;

/*

* Open the file and seek to the end to set the

* cch variable to the length of
*

the file.

hr=CoGetMalloc(MEMCTX_TASK, &plMalloc);

if (FAILED(hr))

/[Close file and return failure

DRAFT: October 24,1995

Page:85 Copyright © 199295 Microsoft Corporation

All Rights Reserved

co

I

The Component Object Model Specification

psz=plIMalloc->Alloc(cch);
pIMalloc->Release();

if (NULL==psz)
/[Close file and return failure

/IRead text into psz buffer and close file

/[Save memory pointer and return success
m_pszText=psz;

return NOERROR;

}

I f an object wi || make many
object is created, store tinealloc pointer in the objectn{_pIMalloc or such), and calMalloc::Release when the object is
destroyed. Altenatively, the APICoTaskMemAlloc and its friends may be used.

Copyright ©199295 Microsoft Corporation
All Rights Reserved

Page:86

The Component Object Model

all ocat i oco@tMatiohonae wigeh the t

DRAFT: October 24,1995

t

The Component Object Model The Component Object Model Specification

5. COM Clients
As described in earlier chapters, a COM Client is simply any piecedd that makes use of another object through
that objectods interfaces. In this sense, a COM Client ma

virtue of using (or reusing) some other object.

If the client is an application, that is, @xecutable program as opposed to a DLL, then it must follow all the re-
quirements for a COM Application as detailed in Chapter 4. That aside, clients have a number of ways to actually get
at an object to use as discussed in a previous chapter. The chgntath a specific function to create an object, it
might ask an existing object to create another, or it might itself implement an object to which some other code hands

yet another objectbés interface pointer. Not all of these
This chapter, however, is concerned with those clients that want to create an object basedsan because at
some point or another, ma ny ocpse dadveaniallysresolve dotthisprogesstFord i r e c t

example, moniker binding iatnally uses &LsID but shields clients from that fact. In any case, whatever client code
uses aLsID will generally perform the following operations in order to make use of an object:

1. ldentify the class of glbct to use.

2. Obtain the fAclass factoryo for the object cl ass ani
object class, returning an interface pointer to it.

3. Ilnitialize the newly created object by d@al |l ing an i
interface, 0 that is, one of a generally smal/l set ¢

4. Make use of the object which generally includes caltpgryinterface to obtain additional working
interface pointers on the object. The client must be pezbfor the potential absence of a desired
interface.

5. Release the object when it is no longer needed.

The following sections cover the functions and interfaces involved in each of these steps. In addition, the client may
want to more closely manage tlwading and unloading of server modules (DLLs or EXES) for optimization purpos-
es, so this chapter includes a section of such management.

As far as the client is concerned, the COM Library exists to provide fundamental implementation locator and object
credion services and to handle remote procedure calls to local or remote objects (in addition to memory management
services, of course). How a server facilitates these functions is the topic of Chapter 6.

Before examining the details of object creating andhimalation, realize that after the object is created and the client

has its first interface pointer to that object, tient cannot distinguish an iprocess object from a local object from

a remote objecby virtue of examining the interface pointeramy other interfaces on that object. That is, all objects
appear identically to the client such that after <creatio
interface member functions. Period. There are not special exceptionsdi@itanust make at rutime based on the

distance of the object in question. The COM Library provides any underlying glue to insure that a call made to a

local or remote object is, in fact, marshaled properly to the other process or the other macheativedg. This

operation is transparent to the clienvho always sees any call to an object as a function call to the objects interfaces

as if that object were iprocess. This consistency is a key benefit for COM clients as it can treat all objedts iden

cally regardless of their actual execution context. If you are interested in understanding how this transparency is
achieved, pl ease see Chapter 7, ACommunicating via Inter
all clients do, in fat; always call an ifprocess object first, but in local and remote cases thptdoess object is just

a proxy that takes care of generating a remote procedure call.

1 Identifying the Object Class

A central feature of COM is that a client can opaquely locate and dynamically load the specific piece code that
knows how to maniplate a specific class of object. This is accomplished through the -G@dlied implementation
locator services through which COM associates a class identifier, thatsis, with the server module for that ob-

ject class. Therefore the COM Library is resgible for defining how this association occurs which usually involves

a systerawide persistent registry @fLsIDs and their corresponding servers. For example, under Microsoft Windows
the COM Library stores the pathnames cpimcess server DLLs and lalcserver EXEs in the system registry under
the text stricusmpg of the objectds

DRAFT: October 24,1995 Page:87 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

The practical upshot of all this for client applications is that the client need not know nor care how this information is
maintained or how the COM Library performs thecsation from CLSID to server. In the same manner the client
need not perform any additional work to establish communication with a local or remote object as such steps are also
handled in COM transparently.

This does leave the question of how the cliegitedmines whatLsID to hand to COM in the first place. There is no
single answer, for it varies from situation to situation. In some cases the object to use hagreowelland fixed

CLSID that is compiled into the client application. In other case<lizat may have a constant text string (compiled,

that is) that represents@sIb and uses some means to associate that name witBia. Another example may be

that the client has some previously saved information that directly or indirectly translaessiD, such as a piece

of storage (where theLsID is serialized into a stream) or a moniker (wherechsiD is implied by the data which

the moniker references). Finally, there may be some means through which the client displays a list of awailable
jects to the endiser where each item in the list corresponds to a spetifio. In such cases the list is generated by
browsing the registry for all existing object classes. Other examples are clearly possible, particularly in network
situations.

2 Creating the Object

Given a CLSID the client must now create an objedhaf class in order to make use of its services. It does so using
two steps:

1. Obtain the fAclass factoryo for the
2. Ask the class factory to instantiate an object of the class, returning an interface pointer to the client.

After these steps, illustrated in Figurel5the client is free to do whatever it wishes with the object through whatever
interfaces the object supports. In faetyerythingdone with the object is accomplished through calls to interface
member functiond APIs that seems to affect objects through other means are merely wrappers to common se-
quences of interface calls.

Before examining each of these steps, l etds take a | ook

.1 The Class Factory Object: IClassFactory Interface
The class factory is another object itself that existsémufactureo bj ect s (hence the name f#Afa

class (henceth qual i f # & classifactog shgedt)s implemented by a server mockither a DLL or EXE,
and supports theclassFactory interface described below. For the purposes of COM ClientsctheFactory interface
is and interface on an object used by a client. For info
, Server \

l (1) fACre all e |

| - an Object | 1

| —) | actory |

E #] (3) Returnnew L (2) Manufacture

interface pointer Object
to client I
< [y
O : @ b]e

> 4

Figure 5-1 A client asks a class factory in the server to create an object.

ThelClassFactoryi nt er face i s i mpl emented b yobj&OMthe purpose ofcreating a i cl
new objects of a particular class. The interface also provides for a COM client to keep the server in memory even
when it is not servicing any object. A class factory has atorme correspondence with@asip (althoudh actual
implementations can be made generic to service multiple classes if the COM server so chooses).

[

47 Note thaticlassFactory would be more appropriately be namesjectractoysince using it one creates objects, not classesicBsractory remains
for historical reasons.
Copyright ©199295 Microsoft Corporation Page:88 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

object,
uuid(00000001-0000-0000-C000-000000000046), // 1ID_IClassFactory
pointer_default(unique)

interface IClassFactory : IlUnknown

{
HRESULT Createlnstance([in] lUnknown * pUnkOuter, [in] REFIID iid, [out] void * ppv);
HRESULT LockServer([in]BOOL fLock);

}

.1 IClassFactory::Createlnstance

HRESULT IClassFactory::Createdtance(pUnkOuter, iid, ppvObject)

Create an uninitialized instance, that is, object, of the class associated with the class factory, returning an interface
pointer of typeid on the object to the caller in the epédrameteppvObject.

If the object is bing created as part of an aggredgatbat is, the client of the object in this case is also an object

server itseld then punkOuter contains thelunknown p o i nt er to the HAouter unknown. 0o S
Chapter 6 for more information. Class implemiations need to be consciously designed to be aggregatable and ac-
cordingly not all classes are so designed.

Argument Type Description

pUnkOuter IUnknown * The controlling unknown of the aggregate object if this object is being created as
part of an aggrgate. IfNULL, then the object is not being aggregated, which is
the case when the object is being created from a pure client. 4floanand the

class does not support aggregation, then the function returns
CLASS_E_NOAGGREGATION.

iid REFIID The identifie of the first interface desired by the caller through which it will
communicate with the object; wusually the
ppv void ** The place in which the first interface pointer is to be returned.
Return Value Meaning
S_OK Success. A new instance was created.
E_NOAGGREGATION Use of aggregation was requested, but this class does not support it.
E_OUTOFMEMORY Memory could not be allocated to service the request.
E_UNEXPECTED An unknown error occurred.

.2 IClassFactory::LockServer

HRESULT IClassFactory::LockServer(fLock)

This function can be called by a client to keep a server in memory even when it is servicing no objects. Normally a
server will unload itself (afeXE server) or allow the COM library to unload it (a DLL server) when the server has
no objects left to serve. If the client so desires, it can lock the server in memory to prevent it from being loaded and
unloaded multiple times, which can improve penfiance of object instantiations. Most clients have no need to call
this function. It is present primarily for the benefit of sophisticated clients with special performance needs from cer-
tain classes.

It is an error to callLockServer(TRUE) and then calRelease without first releasing the lock withockServer(FALSE).

Whoever locks the server is responsible for unlocking it, and once the class factory is released, there is no mecha-
nism by which the caller can be guaranteed to later connect to the same fatasg. All calls to
IClassFactory::LockServer must be counted, not only the last one. Calls will be balanced; that is, for every
LockServer(TRUE) call, there will be aockServer(FALSE) call. If the lock count and the class object reference count are

bath zero, the class object can be freed.

For more information on the use iafckServer, see the AServer Management o section
i mpl ementing this function, see Chapter 6 under AThe CIl a
Argument Type Description

fLock BOOL True if a lock is being added to the class factory; false if one is being removed.

Return Value Meaning

S_OK Success.

E_UNEXPECTED An unknown error occurred.

DRAFT: October 24,1995 Page:89 Copyright © 199295 Microsoft Corporation

All Rights Reserved

The Component Object Model Specification The Component Object Model

3 Obtaining the Class Factory Object for a CLSID

Now that we understand what a class factory is and what functions it parforough theécClassFactory interface we

can examine how a client obtains the class factory. This depends only slightly on whether the object in question is
in-process, local, or remote. For the most part, all cases are handled through the same intgerdtor service

in the COM library and the same API functions. The implications are greater for servers as shown in Chapter 6.

For all objects on the same machine as the client, including object handlers, the client generates a call to the COM
Library function CoGetClassObject. This function, described below, does whatever is necessary to obtain a class fac-
tory object for the given CLSID and return one of that
client may callscClassFactory::Createlnstance to instantiate objects of the class.

We say here that the client mugtneratea call toCoGetClassObject because it is not always necessary to call this
function directly. When a client only wants to create a single object of a giess there is no need to go through
the process of callingoGetClassObject, IClassFactory::Createlnstance, andIClassFactory::Release. Instead it can use API
function Cocreatelnstance described below which conveniently wraps these three more fundamesyal isto one
function.

.1 CoGetClassObject

HRESULT CoGetClassObject(clsid, grfContext, pServerinfo, iid, ppv)

Locate and connect to the class factory object associated with the class idenitififrnecessary, the COMihrary
dynamically loads executable code in order to accomplish this. The interface by which the caller wishes to talk to the
class factory object is indicated by; this is usuallyiD_iClassFactory but can, of course, be any other objectation
interface®®* The c¢cl ass fact or y 0mvwithnonesreéferace @munt an it onebehalf ohteedcallér nthat

is, the caller is responsible for callimrglease after it has finished using the class factory object.

Different pieces of code can be associated with one CLSID for use in different execution contes istpriocess,
local, or object handlefThe context in which the caller is interested is indicated bytizentext parameter, a group
of flags taken from the enumerationscTx:

typedef enum tagCLSCTX {

CLSCTX_INPROC_SERVER =1,
CLSCTX_INPROC_HANDLER =2,
CLSCTX_LOCAL_SERVER =4,
CLSCTX_REMOTE_SERVER = 16.
}CLSCTX;

The several contexts are tried in the sequence in which they are listed here. Multiple values may be combined (using
bitwise OR) indicating that nitiple contexts are acceptable to the caller:

#define CLSCTX_INPROC (CLSCTX_INPROC_SERVER | CLSCTX_INPROC_HANDLER)

#define CLSCTX_SERVER (CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER)

#define CLSCTX_ALL (CLSCTX_INPROC_SERVER | CLSCTX_INPROC_HANDLER | CLSCTX_LOCAL_SERVER |
CLSCTX_REMOTE_SERVER)

These context values have the following meanings which apply to all remote servers as well:

Value Action Taken by the COM Library

CLSCTX_INPROC_SERVER Load the inprocess code (DLL) which cress and completely manages
the objects of this class. If the DLL is on a remote machine, invoke a
surrogate server as well to load the DLL.

CLSCTX_INPROC_HANDLER Load the inprocess code (DLL) which implements cliesitle struc-
tures of this class when irsstces of it are accessed remotely. An object
handler generally implements object functionality which can only be
implemented from an kprocess module, relying on a local server for
the remainder of the implementatiéh.

““For example, the remoting architechture described in Chapter 7 uses
4 For example, in OLE 2, built on togf COM, there is an interface callegwobject through which a client can ask an object to draw its graph-
ical presentation directly to a Windows device contexrt] throughiviewobject:braw. However, ambc cannot be shared between processes, so
thisinterface can only be implemented inside as part of gmaness object. When an object server wishes to provide optimized graphical out-
put but does not wish to completely implement the objegiratess, it can use a lightweight object handler to implemest the drawing
functionality where it must reside, relying on the local server for the full object implementation.

Copyright ©199295 Microsoft Corporation Page:90 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

CLSCTX_LOCAL_SERVER Launch the separafgrocess code (EXE) which creates and manages the
objects of this clas®

CLSCTX_REMOTE_SERVER Launch the separafgocess code (EXE) on another machine which
creates and manages objects of this class.

The COM Library should attempt to load-fmocess servers first, then-mocess handlers, then local servers, then
remote servers. Tt order helps to minimize the frequency with which the library has to launch separate server ap-
plications which is generally a much more thioensuming operation than loading a DLL, especially across the net-
work.

When specifyingCLSCTX_REMOTE_SERVER, the caller may pass @OMSERVERINFO structure to indicate the ma-
chine on which to run the server module, which is defined as follows:
typedef struct tagCOMSERVERINFO {

OLECHAR *szRemoteSCMBindingHandle;
} COMSERVERINFO;%

The COM Library implementation of thisoGetClassObject relies on the system registry to map the CLSID to the
server module to load or launch, but this process is opaque to the client application. If, however, COM cannot make
any association then the function fails with the coREEGDB_E_CLASSNOTREG. If this function launches a server
application it must wait until that server registers its class factory or until adiheccurs (duration determined by

COM, something on the ordef a minute of processing time). See th&RegisterClassObject function in Chapter 6

under AExposing the Class Factory from Local Servers. o
The arguments to this function are as follows:
Argument Type Description

clsid REFCLSID The class of the class factory to obtain.

grfContext DWORD The context in which the executable code is to run.

pServerinfo COMSERVERINFO* |dentifies the machine on which to activate the executable code. Musilhe

whengrfContext does not contaigLSCTX_REMOTE_SERVER. WhenNuULL and
grfContext containSCLSCTX_REMOTE_SERVER, COM uses the default machine
location for this class.

iid REFIID The interface on the class factory object desired by the caller.
ppv void ** The place in which to put the requested interface.
Return Value Meaning
S_OK Success.
REGDB_E_CLASSNOTREG An implementation of the requested class could not be located.
E_OUTOFMEMORY Memory could not be allocated to service the request.
E_UNEXPECTED An unknown error occurred.

The following code fragment demonstrates how a client would @atletClassObject and create an #process in-
stance of th@extRender object with CLSID_TextRender using the class factory to request i@anknown pointer for the
object. In this example the client is explicitly limiting COM to use onlypirocess servers:

IClassFactory * pCF;
IlUnknown * pUnkObj;
HRESULT hr;

hr=CoGetClassObject(CLSID_TextRender, CLSCTX_INPROC_SERVER, NULL, IID_IClassFactory, (void *)pCF);
if (FAILED(hr))
/ICould not obtain class factory, creation fails completely.

/*
* Create the object. If this call succeeds the pUnkObj will
* pbe valid and have a reference count on it on behalf of the caller
* which the caller must Release.
*/

%0 In some cases the @ujt server may already be running and may allow its class factory to be used multiple times in which case the COM
Library simply establishes another connection to the existing class factory in that server, eliminating the need todthercdhstance othe
server applications entirely. While this can improve performance significantly, it is the option of the server to decidass ifactory is sin-
gle- or multiple-use. See the functiorvregisterClassobject in Chapter 6 for more information.

51 This abstractia is still under design.

DRAFT: October 24,1995 Page:91 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

hr=pCF->Createlnstance(NULL, [ID_IUnknown, (void *)pUnkObj);

/[Caller must call Release regardless of Createlnstance result
pCF->Release();

if (FAILED(hr))
/lObject creation failed: interface may not be supported

/*
* Now use the object in whatever capacity the caller desires.
* The first step will be initialization.
*/

/IRelease the object when finished with it.
pUnkObj->Release();
Since the process of callimpGetClassObject, IClassFactory::Createlnstance, and IClassFactory::Release iS SO common in
practice, the COM Library provides a wrapper API function for this sequence calteehteinstance. This allows the
client to avoid the whole issue of class factory objects entirely. Howeuereatelnstance only creates one object at
a time; if the client wants to create multiple objects of the same class at once, it is more efficient to obtain the class

factory directly and callClassFactory::Createlnstance multiple times, avoiding excess calls @@GetClassObject and
IClassFactory::Release.

.2 CoCreatelnstance

HRESULT CoCreatelnstance(clsid, pUnkOuter, grfContext, iid, ppvObj)

Create an uninitialized instance of the classl, asking for interfaceid using the execution contexts given in
gricontext. If the object is being used as part of an aggregation ghekouter contains a pointer to the controlling
unknown. These parameters behave as those of the same nameoG#ClassObject (clsid) and
IClassFactory::Createlnstance (pUnkOuter, grfContext, iid, ppv),

CoCreatelnstance is simply a wrapper function faZoGetClassObject and IClassFactory that is implemented (conceptual-
ly) as follows:

HRESULT CoCreatelnstance(REFCLSID clsid, [lUnknown * pUnkOuter,
DWORD grfContext, REFIID iid, void * ppvObj)

{
IClassFactory * pCF;
HRESULT hr;

hr=CoGetClassObiject(clsid, grfContext, NULL, IID_IClassFactory, (void *)pCF);

if (FAILED(hr))
return hr;

hr=pCF->Createlnstance(pUnkOuter, iid, (void *)ppv);
pCF->Release();

/*
* If Createlnstance fails, ppv will be set to NULL. Otherwise
* ppv has the interface pointer and hr contains NOERROR.
*/

return hr;
}
Argument Type Description
clsid REFCLSID The class of which an instance is desired
pUnkOuter IUnknown* The controlling unknown, if any.
grfContext DWORD The CLSCTX to be used.
iid REFIID The initialization interface desired
ppv void** The place at which to return the desired interface.
Return Value Meaning
S_OK Success.
Any error that can be returned from Semantics as in those functions.

CoGetClassObject or
IClassFactory::Createlnstance

Copyright ©199295 Microsoft Corporation Page:92 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

E_UNEXPECTED An unknown error occurred.

.3 CoCreatelnstanceEx

HRESULT CoCreatelnstanceEx¢al, pUnkOuter, grfContext, pServerinfo, dwCount, rgMultiQI)
Create an uninitialized instance of the classl on a specific machine, asking for a set of interfadzein pResult
using the execution contexts givengdiiContext. If the object is being sed as part of an aggregation themkOuter
contains a pointer to the controlling unknown.
To help optimize rourdrips to a remote machine during instantiation, this API allow the client to specify a set of
interfaces to return on the object via tgRultiQlI array ofMULTI_QI structures, defined as follows:

typedef struct tagMULTI_QI {

REFIID riid; I/l interface to return

void* pvObj; // location to return interface pointer

HRESULT hr; /I location to return result of Querylnterface for riid
}MULTL_QI;

The semantics of using this APl and passinguaTi_QI array are identical to the following sequence of operations,
but incur less overhead for the client, the server, and the network:

IClassFactory *pCF;
IUnknown *punk;
COMSERVERINFO csi;

CoGetClassObject(clsid, CLSCTX_SERVER, &csi, IID_IClassFactory, (void**)&pCF);
pCF->Createlnstance(NULL, 1ID_lUnknown, (void**)&punk);
for (DWORD i=0; i<dwCount; i++)

rgMultiQI[l].hr = punk->Querylnterface(rgMultiQI[i].riid, &rgMultiQI[i]. pvObj);
punk->Release();

Argument Type Description

clsid REFCLSID The class of which an instance is desired

pUnkOuter IUnknown* The controlling unknown, if any.

grfContext DWORD The CLSCTX to be used.

pServerinfo COMSERVERINFO* |dentifies the machine on whicb factivate the executable code. MusnNaeL

whengrfContext does not contaigLSCTX_REMOTE_SERVER. WhenNuULL and
grfiContext cCONtainSCLSCTX_REMOTE_SERVER, COM uses the default machine
location for this class.

dwCount DWORD The number ofMULTI_QI structures in thegMultiQl array.

rgMultiQl MULTI_QI* An array ofMULTI_QI structures. On input, each element should be cleared and
theriid member set to amb being requested. On output, one or more of the in-
terfaces may be retrieved, and individgabbj members will be nomuLL.

Return Value Meaning
S_OK Success.
CO_S_NOTALLINTERFACES Not all of dwCount interfaces requested in tMULTI_QI array were success-

fully retrieved. Examine individuglvObj members oMULTI_QI to determine
exactly which interfaces were returned.

Any error that can be returned from Semantics as in those functions.
CoGetClassObject or
IClassFactory::Createlnstance

E_UNEXPECTED An unknown error occurred.

4 Initializing the Object

After the client has successfully created an object of a given class it must initialize that object. By definition, any

new object created usiniglassFactory:Createlnstance (Or variant or wrapper thereof) is uninitialized. Initialization
generally happens through a single call to a member func
ly the one requested by the client in its call to createotiject, but this is not required. Before an object is initialized,

the only calls that are guaranteed to work on the object (besides the initializing functions themselves) are the
IUnknown functions (of any interface) unless otherwise explicitly specifiethe definition of an interface. In addi-

tion, Queryinterface is only guaranteed to work faunknown and any initialization interface, but not guaranteed for a
nortinitialization interface.

DRAFT: October 24,1995 Page:93 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

Some objects will not require initialization before they arecfion through all of their interfaces. Those that do
require initialization will define, either explicitly through documentation of the object or implicitly through the sce-
narios in which the object is used, which member of which interface can be ugeiiddization.

For example, objects that can serialize their persistent data to a file will implemepértheriei nt er f ace (see |
sistent Storage Interfaces fipesistFi@hopdevhichsirstructathe@bjectpldaed r 8) . T
its data from a file, is the initialization function arrersistFile is the initialization interface. Other examples are ob-

jects that can serialize to storages or streams, where the objects implement the initialization inkerfacssrage

or IPersistStream, respectively (again, see Chapter8). Thad functions in these interfaces are initialization functions

as islPersistStorage::InitNew, which initializes a new object with storage instead of loading a previously saved version.

5 Managing the Object
Once an object is initialized, it is entirely up to the cliemtdetermine what it intends to do with that object. It is

often the case that the initializing interface is not th
the object. The creation sequence only nets the client a single intediterghat has a limited scope of functional-
ity. I f the client wishes to perform an o0p eQueslbteifacen out S i

function to ask for another interface on the same object.

For example, say a client has ated and initialized an object but now wishes to obtain a graphical presentation, say
a bitmap, from that object by callingataObject::GetData (see Chapter 10 for details on this function). The client must
call Querylinterface to obtain anbataObject pointer before calling the function.

It is important to note thaall operations on that object will occur through calls to the member functions of the ob-
ject 6s var iAnpalditionaltABIrfunciang that theieht might call to affect the object itself are usually
wrapper functions of common sequences of interface function calls. There simply is no other way to affect the object
other than through itéds interfaces.

Because a client must ask for an interface befocan possibly ask the object to perform the actions defined in the

interface, the client cannot ask the object to perform an action the object does not support. This is a primary strength

of the Queryinterface function as described in the early chaptef this document. CallinQueryinterface for access to

an objectébés functionality is not problematic nor inconve
the point where the client wants to perform some action on the object. Thelieists generally do not call

Querylinterface for all possible interfaces after the object is created so as to have all the pointers drnirftsiedd, the

client callsQueryinterface before attempting to perform some action with the object.

In practice tht means that the client must be prepared for the failure of a calletginterface. Instead of being a
complete pain to implementation, such preparation defines a mechanism through which the client can make dynamic
choices based on the functionality b&tobject itself on an objetty-object basis.

For example, consider a client application that has created a number of objects and it now wants to save the applica-
tionds state, which includes saving t tueturtstarage forotf nae ac h ok
tive file representation, so its first choice will be to assign an individual storage element in that file for each object.

Each object can then store structured information itself and it indicates its ability to do by imphemidre

IPersistStorage interface. However, some object may not know how to write to a storage but know how to write to a

stream and indicate the capability by implementipgsistStream. Yet others may only know how to write infor-

mation to a file themseés and thus implemeneersistFile. Finally, some objects may not know how to serialize
themselves at all, but can provide a binary memory copy of the their native data thvataghject.

I'n this c &stategy it becas$ fllewst idan object supparsrsistStorage, then give it anstorage in-
stance and ask it to save its data into it by callingsistStorage::Save. If that object does not provide such support,
check if it supportsPersistStream, and if so, create a cliembntrolled stream for it (in perhaps a separate cli-
entcontrolled storage element) and pass tBatam pointer to the object througtrersistStream::Save. If the object
does not support streams, then checkifersistFile. If the object supports serialization to a file, then have the object
write its data into a temporary file by callingersistFile::Save, then make a binary copy of that file in a cli-
entcontrolled stream element within a cliecdntrolled storage element. dl else fails, attempt to retrieve the ob-
ject 6s b i nimatagbjectdGatbata usihg tloerfirst format the object supports, and write that binary data into a
client-controlled stream in a cliertontrolled storage.

Code for such a strategy would beuctured something like the followingpseudoo de f or a fisave obje
in the client:

BOOL SaveObject(lUnknown * pUnkObj)
{

Copyright ©199295 Microsoft Corporation Page:94 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

pUnkObj->Querylinterface(IID_IPersistStorage)

if (success)

{

create a storage element for the object
call IPersistStorage::Save

call IPersistStorage::Release

return TRUE

}

/IAll other cases use a client-controlled stream
create a stream element for the object in some storage

I\PersistStorage not supported, try IPersistStream
pUnkObj->QuerylInterface(IID_IPersistStream)

if (success)

call IPersistStream::Save
call IPersistStream::Release
return TRUE

}

/lIPersistStream not supported, try IPersistFile
pUnkObj->QuerylInterface(IID_IPersistFile)

if (success)

/[Save to a temp file

call IPersistFile::Save("objdata.tmp");
call IPersistFile::Release

read data from temp file

write data to the stream

return TRUE

}

/IAll else failed, try IDataObject
pUnkObj->Querylinterface(IID_IDataObject)

if (success)

call IDataObject::EnumFormatEtc
call IEnumFORMATETC to get the first format (assume it's native)
call EnumFORMATETC::Release

call IDataObject::GetData for the format, asking for global memory
call IDataObject::Release

Lock global memory and write to stream
Free global memory
return TRUE

}

/[Everything failed, so give up
destroy stream we created: not using it.
return FALSE

}
In this example the client is prepared for many differenesypf objects and how they might provide persistent in-
formation (and usingpataObject::GetData here is stretching the concept somewhat, but shows that the client has many
choices). Based on the results@iryinterface the client decides at rutime howto save each individual object.

Reloading these objects would be a similar procedure, but the client would know, from the structure of its storage
and other information it saved about the objects itself, which method to use to reload the object fromagee She

client wants to insure that it uses the same method to load the object that it did for saving it originally, that is, use the
same interface instead of querying for the best one. The reason is that while the data was passively storedeon disk, th
object that wrote that data might have been updated such that where it once only suppstedream, for exam-

ple, it now supportsersistStorage. In that case the client should ask it to load the data uréngstStream::Load.

However, when thelient goes to save the object again, it will now successfully find that the object supports
IPersistStorage and can now have the object save into a storage element instead. (The container would also insure that

DRAFT: October 24,1995 Page:95 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

the old clientcontrolled stream was deleted it is no longer in use for that object.) This demonstrates how an object
can be updated and new interfaces supported withaoytecompilation on the part of existing clients while at the
same timesuddenly working with clients on a higher level ofigration than beforeln order to remain compatible

the object must insure that it supports the older interfaces (sudbem@stStream) but is free to add new con-
tract® new interfaces such aersistStoraged as it wants to provide new functionality.

Thepoint of this example, which is also true for clients that use any other interfaces an object might support in other
scenarios, is that the client is empowered to make dynamic decisions ombjgarbasis through th@ueryinterface
function. Containerprogrammed to be dynamic as such allow object to improve independently while insuring that
the container will work as go@and generally bettér as it always has with any given object. All of this is due to

the powerful and importampueryinterface mechanism that for all intents and purposes is the single most important
aspect of true system component software.

6 Releasing the Object

The final operation required in a COM client when dealing with an object from some other server is to free that ob-
ject when the client no longer needs it. This is achieved by callingdleese menber function of all interfaces ob-
tained during the course of using the object.

Recall that a function that creates or synthesizes a new interface pointer is responsible foadmbntprough that

pointer before returning it to the caller of the fupati This applies to theelassFactory::Createlnstance function as well
asCoCreatelnstance (and for that mattercoGetClassObject, too, which is why you must caltlassFactory::Release after

creating the object). Therefore, as far as the client is coadethe object will have a reference count of one after
creation. The object may, in fact, have a higher reference count if it is also being used from other clients as well, but
each client is only responsible and cognizant of the reference counts adiied emalf.

The other primary function that creates new interface pointe@udsyinterface. Every call the client makes to
Querylnterface to obtain another interface pointer will internally generate another calidRef in that object, incre-
menting tke reference count. Therefore, in addition to calliegpase through the interface pointer obtained in the
creation sequence, the client must also rakase through any interface pointer obtained frayueryinterface (this is
illustrated in the pseudoode of the previous section).

The bottom line is that the client is responsible for matching any operation that generates adambtehrough a

given interface pointer with a call Release through that same interface pointer. It is not necessarglt®eease in

the opposite order of calls midRef; it is just necessg to match the pairs. Failure to do so will cause memory leaks

as objects are not freed and servers are not allowed to shut down properly. This is no different that forgetting to free
memory obtained throughalloc.

Finally, although the client matches italls toAddRef andRelease, the actual object may still continue to run and the
server may continue to execute as well without any objects in service. The object will continue if other clients are
using that same object and thus have reference courits@nly when all clients have released their references will

that object free itself. The server will, of course, continue to execute as long as there is an object to serve, but the
client does have some power over keeping a server running even withj@etso That is the purpose of Server
Management functions in COM.

7 Server Management

As mentioned in previous sections, a client has the ability to manage servers on the server level to keep them running
even when they are not serving any o0bj ecassFacory:Léckseverc| i ent 6
func on described above. By calling this function with the
As long as the server either has objects createltias one or more locks on it, the server will continue to execute.

When the server detectszaro object and zero lock condition, it can unload itself (which differs between DLL and

EXE servers, as described in Chapter 7).

A client can place more than one lock on a server by califagsFactory::LockServer(TRUE) more than once. Each call
to LockServer(TRUE) must be matched with a call tmckServer(FALSE)O the server maintains a lock count for the
server as it maintains a reference count for its served objects. ButAudhitef and Release affect objectsLockServer
affects the server itself.

LockServer affects all serveis in-process, local, and rem@tddentically. The client does have some additional con-
trol over inprocess objects as it normally would for other DLLs through the functiooisadLibrary,
CoFreeUnusedLibraries, and CoFreeAllLibraries, as described below. Normally ontpFreeUnusedLibraries is called from a

Copyright ©199295 Microsoft Corporation Page:96 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

client whereas the others are generally used inside the COM Library to implement other API functions. In addition,
the COM Library supplies one additional function that has meairinthis contextColsHandlerConnected, that tells

the container if an object handler is currently working in association with a local server as described in its entry be-
low.

.1 CoFreeUnusedLibraries

void CoFreeUnusedhraries(void)

This function and unloads any DLLs that have been loaded as a result of COM object creation calls but which are no
longer in use. Client applications can call this function periodically to free up resources.

.2 ColsHandlerConnected

BOOL ColsHandlerConnected(pUnk)

Determines if the specified handlisr connected to its corresponding object in a running local server. The result of
this function might be used in a client application to determimerifain operations might result in launching a server
application allowing the client to make performance decisions.

Argument Type Description
pUnk IUnknown * Specifies the object in question.
return value BOOL True if a handler is connected to a runnsegver with the full object implemen-

tation, FALSE if the handler is not connected.

DRAFT: October 24,1995 Page:97 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

6. COM Servers

As described in earlier chapters, a COM Server is some module of code, a DLL or an EXE, that implements one or
more object classes (each with their oarsiD). A COM server structures the object implementations such that
COM clients can create an use oligefrom the server using the CLSID to identify the object through the processes
described in Chapter 5.

In addition, COM servers themselves may be clients of other objects, usually when the server is using those other
objects to help implement part of ibsvn objects. This chapter will cover the various methods of using an object as
part of another through the mechanisms of containment and aggregation.

Another feature that servers might support is the ability to emulate a different server of a ddfementThe COM
Library provides a few API functions to support this capability that are covered at the end of this chapter.

If the server is an application, that is, an executable program, then it must follow all the requirements for a COM
Application as e@tailed in Chapter 4. If the server is a DLL, that is, apriocess server or an object handler, it must

at least verify the library version and may, if desired, insure that the COM Library is initialized. That aside, all serv-
ers generally perform the folwing operations in order to expose their object implementations:

1. Allocate a class identifiér acLsIDO for each supported class and provide the system with a map-
ping between theLsID and the server module.

2. Implement a class factory object with tltgassFactory interface for each supportedsip.

3. Expose the class factory such that the COM Library can locate it after loading (DLL) or launching
(EXE) the server.

4. Provide for unloading the server when there are no objects being served and mnltlc&server
(IClassFactory::LockServer).

Of course, there must be some object to serve, so the first section of this chapter discusses the basic structure of an
object and some considerations for design. The sections that follow then cover the fuimtawed in each of

these steps for the different styles of seréeBL L and EXEd which apply regardless of whether the server is run-

ning on a remote machine. Also included is a discussion of object handlers (sps&iahprocess objects) before

the diswission of aggregation. Note that no new interfaces are introduced in this chapter as the fundamental ones,
IUnknown andIClassFactory, have already been covered.

As far as the server is concerned, the tCc@xMe dbjechsraredrtoy e x i st
handl e remote method calls from clients in other proces:
values back to the client. Whereas client appliciations a
created, the server is, of course, always aware of that context-p\mim c ess obj ect is al ways | o

process space. A local or remote object always runs in a process other than the client, or on a different machine.
However, the actal object itself can be written such that it does not need to care about the execution context, leaving
the specifics to the structure of the server module instead. This chapter will cover one such strategy.

Finally, recall from the beginning of Chaptettat a client always makes a call into somincess object whenev-

er it calls any interface member function. If the actual object in the server is local or remote, that object is merely a
proxy that generates the appropriate remote method call toutb@lject. This does not mean a server has to under-

stand RPC, however, as the server always sees these calls as direct calls from a piece of code in the server process.

The mechanism that achieves this, descri Bemot nndhapitert
RPC call is picked up in the server process by an fAstub
call to the serverdés object. From the serverds point of

1 ldentifying and Registering an Object Class

A major strength of COM is the use of globally unique identifiers to émdlgnname each object class that exists,

not only on the local machine but universally across all machines and all platforms. The algorithm that guarantees
this is encompassed in the COM Library functioscreateGuid as described in Chapter 3. An objéetplementor

must obtain &uID to assign to the object server asdtsID for each implemented class.

.1 System Registry of Classes for the Local Machine

A cLsID to identify an object implementation is not very useful unless clients have a way of findiogshe From
Chapter 5 we know that there are a number of ways a client may come to lai®sapaFirst of all, that client may

Copyright ©199295 Microsoft Corporation Page:98 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

be compiled to specifically depend on a cffie CLSID, in which case it obtained the
DEFINE_GUID macros present. But for the most part, clients will want to obtasiDs at runtime, especially when

that client displays a list of available objectsto and-eedraml cr eat es an object of the se
request. So there must be a way to dynamically locate and load CLSIDs for accessible objects.

Furthermore, there has to be some systdde method for the COM Library to associate a giwsiD, regardess

of how the client obtained it, to the server code that implements that class. In other words, the COM Library requires
some persistent store afsiD-to-server mappings that it uses to implement its locator services. It is up to the COM
Library implenentor, not the implementor of clients or servers, to define the store and how server applications would
register theiccLsIDs and server module names in that store.

The store must distinguish betweenrprocess, local, and remote objects as well as obgatllers in addition to any
environmenispecific differences. The COM implementation on Microsoft Windows uses the Windows system reg-

istry (also called the registration database, or RegDB for short) as a store for such information. In that registry there

is a root key called cL s (spelled out in those letters) under which servers are responsible to create entries that
point to their modul es. Usually these entries are create
be done at rwtime if desired.

When a server is installed under Windows, the installation program will create a subkeyi underfop éach class
the server supports, using the standard string representation cifgtreas the key name (including the curly brac-
es)>2 So the first key that theextRender object would create appears as followsdID is the root key the indentation
of the object class implies a siey relationship with the one above it):

CLSID

{12345678-ABCD-1234-5678-9ABCDEF00000} = TextRender Example

Depending on the type of sameachine server that handles this CLSID there will be one or more subkeys created
underneath the ASCII CLSID string:

Server Flavor __Subkey Name Value

In-Process InprocServer32 Pathname of the server DLL

Local LocalServer32 Pathname of the server EXE

Object Handler InprocHandler32 Pathname to the object handler DLL.

So, for example, if th&extRender object was implemented inTEXTREND.DLL, its entries would appear as:

CLSID
{12345678-ABCD-1234-5678-9ABCDEF00000} = TextRender Example
InprocServer32 = c:\objects\textrend.dll
If it were implemented in an applicationEXTREND.EXE, and worked with an object handlier TEXTHAND.DLL, the
entries would appear as:

CLSID
{12345678-ABCD-1234-5678-9ABCDEF00000} = TextRender Example
InprocHandler32 = c:\handlers\texthand.dll
LocalServer32 = c:\objects\textrend.exe

Over time, the registry will become populated with mangiDs and many such entries.

.2 Remote Objects: AtBits Key

As described in the last section, a prerequisite to server implementation is generating a CLSID for that server. This
CLSID is registered in the system registry ancerefced in the server code. The full path name of the server DLL or
EXE is registered in association with the CLSID.

The remote server can actually run either on the machine where the server code is stored or on the same machine as
its connected client &uming the class is registered on the remote machine and there is a compatible binary image
available). Servers that use the default security provided with the system must run where its client is running. To
indicate the mode of operation, the Microsofindows implementation of COM includes the subkeyt Bthatdso
regi stered al orugD. Wo redgstertatserverserunwiiaredtise persistent state of the object is stored,
setAtBits to fi Y T® register the server to run where the cliemtisnni n g, either set it to ANO
altogether. The default is to run the server where the client is running. The registration example below shows how
theTextRender object would allow itself to be activated remotely.

CLSID

52 Under Microsoft Windows, this key is created using the standard Windows API for registry manipulation. Other COM implersemtation
include their own functions as necessary, as | ong specificattods consi stent
DRAFT: October 24,1995 Page:99 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

{12345678-ABCD-1234-5678-9ABCDEF00000} = TextRender Example
LocalServer = c:\objects\textrend.exe
AtBits = Y

.3 SeltRegistering Servers

COM servers which are installed as part of an application setup program are usually registered by the setup program.
However, to facilitate the registration of smaller grained servers, the notion ofigegilfering server is introduced.

.1 SelfRegistering DLL's

Inprocess COM servers (DLL®&ds on t he Wi-ragiktratiosn thimghdevevbh c i nt o s |
DLL entry points with welknown names. The DLL entry points for registering and unregistering a server are de-
fined as follows:

HRESULT DIIRegisterServer(void);
HRESULT DllUnregisterServer(void);

Both of these entry points are required for a DLL to be-ssfstering. The implementation of tinéiRegisterServer
entry point adds or updates registry information for all the classes implemented by the DLbuURh®jisterServer
entry point removeds information from the registry.

.2 Self-Registering EXE's

There isn't an easy way for EXE's to publish entry points with -lwedwn names, so a direct translation of
DlRegisterServeri s n ' t possibl e. | nredisEatioh usingmEdabecemnwmnddipedlags. EXEés that

support seHr e gi stration must mar k their resource fork in the
command line flags is detectable. Launching an EXE marked aseggétering with theREGSERVER command line

argument should cause it to do whatever OLE installation is necessary and then eXiINRE®SERVER argument

is the equivalent toDIlUnregisterServer. The /REGSERVER and /UNREGSERVER strings should be treated
caseinsensitively, and that the ahactersécan be substituted fa@r/ o

Other than guaranteeing that it has the correct entry point or implements the correct command line argument, an
application that indicates it is salégistering must build its registration logic so that it may Heedaany number of

times on a given system even if it is already installed. Telling it to register itself more than once should not have any
negative side effects. The same is true for unregistering.

On normal startup (without thheEGSERVER command lineoption) EXE's should call the registration code to make
sure their registry information is current. EXE's will indicate the failure or success of theegisifration process
through their return code by returning zero for success anézeanfor failure

.3 ldentifying Self-Registering Servers

Applications need to check to see if a given server module isesgi§tering without actually loading the DLL or

EXE for performance reasons and to avoid possible negativeaffielets of code within the naule being executed
without the module first being registered. To accomplish this, the DLL or EXE must be tagged with a version re-
source that can be read without actually causing any code in the module to be executed. On Windows platforms,
this involvesusing the version resource to hold a geldistration keyword. Since the VERSIONINFO section is

fixed and cannot be easily extended, the following string is added tsttingFileinfo", with an empty key value:

For example:

VS_VERSION_INFO VERSIONINFO
FILEVERSION 1,0,0,1
PRODUCTVERSION 1,0,0,1
FILEFLAGSMASK VS_FFI_FILEFLAGSMASK
#ifdef _DEBUG

FILEFLAGS VS_FF_DEBUG|VS_FF_PRIVATEBUILD|VS_FF_PRERELEASE

#else
FILEFLAGS 0 // final version

#endif
FILEOS VOS_DOS_WINDOWS16
FILETYPE VFT_APP
FILESUBTYPE 0 /I not used

BEGIN

Copyright ©199295 Microsoft Corporation Page:100 DRAFT: October 24,1995

All Rights Reserved

The Component Object Model The Component Object Model Specification

BLOCK "StringFilelnfo"

BEGIN
BLOCK "040904E4" // Lang=US English, CharSet=Windows Multilingual
BEGIN
VALUE "CompanyName", “\0"
VALUE "FileDescription", "/BUTTON OLE Control DLL\0"
VALUE "FileVersion", "1.0.001\0"
VALUE "InternalName", "BUTTON\QO"

VALUE "LegalCopyright", "0"
VALUE "LegalTrademarks", "\0"
VALUE "OriginalFilename","BUTTON.DLL\0"
VALUE "ProductName", "BUTTON\O"
VALUE "ProductVersion", "1.0.001\0"
VALUE "OLESelfRegister", "" // New keyword
END

END

BLOCK "VarFilelnfo"

BEGIN
VALUE "Translation", 0x409, 1252

END

END

To support selfegistering serversan application can add a "Browse" button to its object selection user interface,
which pops up a standard File Open dialog. After the user chooses a DLL or EXE the application can check to see if
it is marked for selfegistration and, if so, call it®lRegisterServer entry point (or execute the EXE with the
/IREGSERVER command line switch). The DLL or EXE should register itself at this point.

2 Implementing the Class Factory

The existence of a CLSID available to clients implies that there is a class factory that is capable of manufacturing
objects of that class. The server, DLL or EXE, associated twitclass in the registry is responsible to provide that
class factory and expose it to the COM Library to make
mechani sms to expose the class fact oraclassdacteryormag beeid s hor t
plemente&.

.1 Defining the Class Factory Object

First of all, you need to define an object that implementsdhesFactory interface (or other factoryype interface if
applicable). As you would define any other object, you catnéef class factory. The following is an example class
factory for ourTextRender objects in C++:

class CTextRenderFactory : public IClassFactory
{

protected:
ULONG m_cRef;

public:
CTextRenderFactory(void);
~CTextRenderFactory(void);

/NUnknown members

HRESULT Querylnterface(REFIID, pLPVOID);
ULONG AddRef(void);

ULONG Release(void);

/lIClassFactory members
HRESULT Createlnstance(lUnknown *, REFIID iid, void **ppv
HRESULT LockServer(BOOL);

h
Implementing the member furiohs of this object are fairly straightforwardddref and Releaselo their usual busi-
ness, withRelease calling delete thiswhen the count is decremented to zero. Note that thecmrot event irRe-
leasehas no effect other than to destroy the olfjeittdoes not cause the server to unload as that is the prerogative of
LockServer. In any case, th@ueryinterface implementation here will return pointers fiamknown andiClassFactory.

53 Note that the example code given below illustrates one of many ways a class factory object can be implemented.

DRAFT: October 24,1995 Page:101 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

.1 IClassFactory::Createlnstance

The class factorgpecific functims are really all that are interestingreateinstance in this example will create an
instance of thecTextRender object and return an interface pointer to it as shown below. Note thatkbuter is
nonNULL, that is, another object is attempting to aggpte, this code will fail withCLASS_E_NOAGGREGATION
(this limitation will be revisited when later when aggregation is discussed).

/IA global variable that counts objects being served
ULONG g_cObj=0;

HRESULT CTextRenderFactory::Createlnstance(lUnknown * pUnkOuter, REFIID iid, void ** ppv) {

CTextRender * pObj;
HRESULT hr;
*ppv=NULL,

hr=E_OUTOFMEMORY;
if (NULL!=pUnkOuter)
return CLASS_E_NOAGGREGATION;

/[Create the object passing function to notify on destruction.
pObj=new CTextRender(pUnkOuter, ObjectDestroyed);
if (NULL==pObj)

return hr;

[Usually some other object initialization done here]

//Obtain the first interface pointer (which does an AddRef)
hr=pObj->QuerylInterface(iid, ppv);

/IKill the object if initial creation or Flnit failed.
if (FAILED(hr))

delete pObj;
else
g_cObj++;
return hr;
}
There are two interesting points to this code, which is fairly standard for server implementatisingf all, note the
cal | t o Quanenterfach gfter crealiomn. This accomplishes two things: first, since objects are generally con-

structed with a reference count of zero (common practice) themikhiginterface call, if successful, has theffect of
calling Addref as well, making the object have a reference count of one. Second, it lets the object determine if it sup-
ports the interface requestediithand if it does, it fills inppv for us.

The second key point is that COM defines no staddnechanism for counting instantiated objects (there is no need

for such a generic service), so this implementation example maintains a count of the objects in service using the
global variableg_cobj. This count generally needs to be global so thatrogiebal functions can access it (see
AProviding for Ser vercCredlemdtaweasdcicasgfully cleads a mew .objed¥lhit énarements this

count. When an object (not the class factory but the one the class factory creates) destroystitsel§inii mp|l e ment a
tion of CTextRender::Release, it should decrement this count to match the incremegtdatelnstance.

It is not necessary, however, for the object to have direct access to this variable, and there are techniques to avoid
such access.. The ample above passes a pointer to a function callgettDestroyed to the CTextRender constructor
such that when t he ®Rbepseitwill cal e©wediDestoyedsst oi tasfeflefc ti nt hiet 6sser ver 6 s

void ObjectDestroyed(void) {
g_cObj--;
[Initiate unloading if g_cObj is zero and there are no locks]
return;

}

CTextRender::CTextRender(void (* pfnDestroy)(void)) {
m_cRef=0;
m_pfnDestroy=pfnDestroy;
[Other initialization]

return;
}

ULONG CTextRender::Release(void) {
ULONG CRefT;

cRefT=--m_cRef;

Copyright ©199295 Microsoft Corporation Page:102 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

if (OL==m_cRef) {
if (NULL!=m_pfnDestroy)
(*m_pfnDestroy)();
delete this;

return cRefT;

}
The object might also be given a pointer to the class factory object itself (which the object willazall through,
of course) that accomplishes the same thing. Regardless of the design, the point is that the object can be designed so
as to be unaware of the exact object counting mechanism, having instead some mechanism to notify the server as a
whole about the desty event. A standard mechanism for this is not part of COM.

You might have noticed that th@bjectDestroyed function above contained a note that if there are no objects and no

locks on the server, then the server can initiate unloading. What really reappen depends on the type of server,
DLL or EXE, and wil |l be covered under AProviding for Ser

.2 IClassFactory::LockServer

The other interesting member function of a class factompdgserver. Here the server increments of decrements a
lock count depending on thieock parameter. If the last lock is removed and there are no objects in server, the server
initiates unloading which again, is specific to the type of server and a topic for adatem. In any case, COM does
not define a standard method for tracking the lock count. Since other code outside of the class factory may need
access to the lock count, a global variable works well:

/IGlobal server lock count.

ULONG g_clLock=0;
The implementation ofockServer is correspondingly simple:

HRESULT CTextRenderFactory::LockServer(BOOL fLock)

{
if (fLock)
g_cLock++;
else
{
g_cLock--;
[Initiate unloading if there are no objects and no locks]
}
return NOERROR,;
}

It is perfectly reasonable to double the use abbj for counting locks as well as objects. You might want to keep
them separate for debugging purposes.

3 Exposing the Clasd~actory

With a class factory implementation the server must now expose it such that the COM Library can locate the class
factory from within CoGetClassObject after it has loadedhe DLL>* server or launched the EXE server. The exact
method of exposing the class factory differs for each server type. The following sembiearseach type in detail

which apply to DLLs and EXEs running on the local or remote machine in relation to the client. There are also some
considerations for DLL servers running remotely under a surrogate server that are covered in this section.

.1 Exposing the Class Factory from DLL Servers

To expose its class factory, anpmocess server only needs to expoe function explicitly name@dliGetClassObject.

The COM Library wild.l attempt t o3 bndcalitfem withinceGet€lagsabiect i on i n
when the client has specifietLSCTX_INPROC_SERVER. Note that a DLL server can in addition expose a class fac-

tory at a later time using the rfation CoRegisterClassObject discussed for EXE servers below. This would only be

used after the DLL was already loaded for some other reason.

5 Again, the term DLL is used generically to describe any shared library as supported by a given COM platform.

%5 Under Microsoft Windows this means listing the function in theorTs section of a module definitions file or using thelecispec(dilexport)
keyword at compildime. Other platforms may differ as to requirements here, but in any case the function must be visible to other modules
within the same process, but not@ss processes.

%6 Under Windows coGetClassobject, after loading the DLL witltoLoadLibrary, call the Windows APbet Proc Ad dr &G ls 4 $ DO to@btairbthe
pointer to the actual function in the DLL.

DRAFT: October 24,1995 Page:103 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

.1 DlIGetClassObject
HRESULT DIlIGetClassObject(clsid, iid, ppv)
This is not a fuetion in the COM Library itself; rather, it is a function that is exported from DLL servers.

In the case that a call to the COM API functiosGetClassObject results in the class object having to be loaded from a
DLL, CoGetClassObject uses thebliGetClassObject that must be exported from the DLL in order to actually retrieve the
class.

Argument Type Description

clsid REFCLSID The class of the class factory being requested.

iid REFIID The interface with which the caller wants to talk to the class factory. Most often
this islID_IClassFactory but is not restricted to it.

ppv void ** The place in which to put the interface pointer.

Return Value Meaning

S_OK Success.

E_NOINTERFACE The requested interface was not supported on the class object.

E_OUTOFMEMORY Memory could not be allocated to service the request.

E_UNEXPECTED An unknown error occurred.

Note that sinc®liGetClassObject is passed theLsID, a single implementation dlfiis function can handle any number
of classes. That also means that a singlprocess server can implement any number of classes. The implementation
of DIGetClassObject only need create the proper class factory for the requested CLSID.

Most implementabn of this function for a single class look very much like the implementation of
IClassFactory::Createlnstance as illustrated in the code below:
HRESULT DIIGetClassObject(REFCLSID clsid, REFIID iid, void **ppv) {

CTextRenderFactory * pCF;
HRESULT hr=E_OUTOFMEMORY;

if (ICLSID_TextRender!=clsid)
return E_FAIL;
pCF=new CTextRenderFactory();
if (NULL==pCF)
return E_OUTOFMEMORY;

/[This validates the requested interface and calls AddRef
hr=pCF->Querylnterface(iid, ppv);
if (FAILED(hr))
delete pCF;
else
ppv=pCF;
return hr;
}
As is conventional with object implementations, including class factories, construction of the object sets the refer-
ence count to zero such that the initfakryinterface creates the firsactual reference count. Upon successful return
from this function, the class factory will have a reference count of one which must be released by the caller (COM or
the client, whoever gets the interface pointer).

The structure of a DLL server with its @t and class factory is illustrated in Figurd ®elow. This figure also
illustrates the sequence of calls and events that happen when the client executes the standard object creation se-
guence ofoGetClassObject andIClassFactory::Createlnstance.

Copyright ©199295 Microsoft Corporation Page:104 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

Client i DLL
Object .
1_+ call CoGetClassObjec Interfaces |
yt Call Createinstan 10
Use objec »
7
COM 9 i
5etClassObject
ook up class in regDB |
6 IClassFactory O—|~
K up n regDE .
‘ 2 ;|
0 ibrary on DLL >
I
t Address on 3
GetClassObject - DHGetClassObj
5 reate class factory
eturn class factor | Retl lassFactory
nter to user \

Figure 6-1: Creation sequence of an object from a DLL server.
Function calls notin COM are from the Windows API.

.2 Exposing the Class Factory from EXE Servers

To expose a class factory from a server application is a different matter than for a DLL server for the reason that the
application executes in a different process from the client. Thus, the COM Library cannot just obtain a pointer to an
exported function and call that function to retrieve the class factory.

When COM launches an application from withdnGetClassObject it must wait for that application to register a class
factory for the desired CLSID through the functiosRegisterClassObject.%” Once that class factory appears to COM
it can return an interface pdar (actually a pointer to the proxy) to the clieabGetClassObject may time out if the
server application takes too long.

The server can differentiate between times it is launched steome and when it is launched from within COM.

When COM launches thapplication it includes a switch/ Embe d86do ngat he ser verds command
present, the server must register itass factory withCoRegisterClassObject. If the flag is absent, the server may or

may not choose to register depending on the object class.

Note that a server application can support any number of object classes by celléagterClassObject on startupIn
fact, a server must registell supported class factories because the application is not told whith was requested
in the client.

Where CoRegisterClassObject registers a servers factories with COM on startup, the funatigRevokeClassObject
unregisters those same factories on application shutdown so they are no longer available, meaning COM must launch
the server again for those class factories. Each caltoRegisterClassObject must be matched with a call to
CoRevokeClassObject.

.1 CoRegisterClassObject

HRESULT CoRegisterClassObject(clsid, puUnk, grfContext, grfFlags, pdwRegister)

Registers the specified server class factory identified pltink with COM in order that it may be connected to by

COM Clients. When a server application starts, it creates each class factory it supports and passes them to this func-
tion. When a server application exits, it revokes all its registered class objectso®étfokeClassObject.

Note that an ifprocess object could dahis function to expose a class factory only when the DLL is already loaded

in another process and did not want to expose a class factory until it was loaded for some other reason.

The grfcontext flag identifies the execution context of the server anglsisally CLSCTX_LOCAL_SERVER. ThegrfFlags
is used to control how connections are made to the class object. Values for this parameter are the following:

This function is called in the COM Library | oaded indstibhnezessagtover 0s
perform remote procedure calls.
%8 Caseinsensitive. This name originated in OLE 1.0 and has been maintained for such historical reasons and compatibility.

DRAFT: October 24,1995 Page:105 Copyright © 199295 Microsoft Corporation
All Rights Reserved

pr

The Component Object Model Specification The Component Object Model

typedef enum tagREGCLS
{

REGCLS_SINGLEUSE =0,
REGCLS_MULTIPLEUSE = 1,
REGCLS_MULTI_SEPARATE =2
}REGCLS;
Value Description
REGCLS_SINGLEUSE Once one client has connected to the class objectGwitietClassObject, then the
class object should be removed from public view so that no other clients can
similarly connect to it; new clients Wuse a new instance of the class factory,
running a new copy of the server application if necessary. Specifying this fla
does not affect the responsibility of the server to CaltevokeClassObject on
shutdown.
REGCLS_MULTIPLEUSE Many CoGetClassObject calls can connect to the same class factory.
When a class factory is registered from a local senéTdntext is
CLSCTX_LOCAL_SERVER) andgrfFlags includes REGCLS_MULTIPLEUSE,
then it is the case that the same class factory wglltematically also egistered
as the inprocess serveCL.SCTX_IN-PROC_SERVER) for its own process
REGCLS_MULTI_SEPARATE The same aBEGCLS_MULTIPLEUSE, except that registration as a local servel
doesnot automatically also register as angrocess server in that same prese
(or any other, for that matter).

Thus, registering as
CLSCTX_LOCAL_SERVER, REGCLS_MULTIPLEUSE
is the equivalent to registering as
(CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER), REGCLS_MULTI_SEPARATE
but is different than registering as
CLSCTX_LOCAL_SERVER, REGCLS_MULTI_SEPARATE.
By usingREGCLS_MULTI_SEPARATE, an object implementation can cause different class factories to be used accord-
ing to whether or not it is being created from within the same process as it is implemented.

The following table summarizes the allowable flag combinations and the registrations that are effected by the various
combinations:

REGCLS - REGCLS - REGCLS -MULTI_SEPAR Other
SINGLEUSE MULTIPLEUSE ATE

CLSCTX_IN-PR error In-Process In-Process error
OC_SERVER
CLSCTX_LO-CA Local In-Process/Local Just Local error
L_SERVER
Both of the above error In-Process/Local In-Process/Local error
Other error error error error

The key difference is in the middle columns and the middle rows. IrebeLS_MULTIPLEUSE column, they are the
same (registers multiple use for both InProc and local); inREE&CLS_MULTI_SEPARATE column, the local server
case is local only.

The arguments to this function are as follows:

Argument Type Description

rclsid REFCLSID ThecLsID of the class factory being registered.

pUnk IUnknown * The class factory whose availability is being published.

grfContext DWORD As in CoGetClassObject.

grfFlags DWORD REGCLS values that control the use of the class factory.

pdwRegister DWORD * A place at whicha token is passed back with which this registration can be re-
voked inCoRevokeClassObject.

Return Value Meaning

S_OK Success.

CO_E_OBJISREG Error. The indicated class is already registered.

E_OUTOFMEMORY Memory could not be allocated to service the request.

E_UNEXPECTED An unknown error occurred.

Copyright ©199295 Microsoft Corporation Page:106 DRAFT: October 24,1995

All Rights Reserved

The Component Object Model The Component Object Model Specification

.2 CoRevokeClassObject

HRESULT CoRevokeClassObject(dwRegister)

Informs the COM Library that a class factory previously reggisti withCoRegisterClassObject iS no longer available
for use. Server applications call this function on shutdown after having detected the necessary unloading conditions.

1 There are no instances of the class in existence, that is, the object caenat is z
1 The class factory has a zero number of locks frolassFactory::LockServer.
1 The application servicing the class object is not showing itself to the user (that is, not under user control)

When, subsequently, the reference count on the class object reaches zero, the class object can be destroyed, allowing
the application to exit.

Argument Type Description

dwRegister DWORD A token previously returned frooRegisterclassObject.
Return Value Meaning

S_OK Success.

E_UNEXPECTED An unknown error occurred.

The structure of a server application with its object and class factory is illustrated in Bigur€his figure also
illustrates the sequence of calls and events that happen when the client executes the standard object creation se-
quence ofoGetClassObject andIClassFactory::Createlnstance.

Client - EXE -
1_+ call CoGetClassObject Object Interfaces .
Call Createlnstance - 9
Use object > O
o Object
6

COoM 8 —d
CoGetClassObject .
yok up class in re |
5 IClassFactory 0 Class Fac.tc_) /
ook up in reg creates Objec
WinExec on EX 2 NirnMain .
Colnitialize
Create class factor
CoRegisterClassObject
. assing IClassFactory
eturn class factory vield
pointer to user 4 N
s s s

Figure 6-2: Creation sequence of an object from a server application.
Function calls notin COM are from the Windows API.

Compare this figure with DLL server Figurel6 i n t he previous section. Youodl | n
is generally the same, that is, bdthave t heir object and c¢cl ass factory. You
from the clientds point of view i s cisefrthe desieetl objechthat i n , o}

client leaves the specifics up ttnGetClassObject. The only differences between the two figures occur inside the
COM Library and the specific means of exposing the class factory from the server (along with the unloading mecha-
nism).

Finally, CoRegisterClassObject and CoRevokeClassObject along with when a servaralls them demonstrate why a refer-

ence count on the class factory is insufficient to keep a server in memory anatgsfactory::LockServer exists.
CoRegisterClassObject must, in order to be implemented properly, hold on toitinenown pointer passetb it (that is,

the class factory). The reference counting rules stateCiradgisterClassObject must callAddRef on that pointer ac-
cordingly. This reference count can only be removed inGigkevokeClassObiject.

However,CoRevokeClassObject is only calledon application shutdown and not at any other time. How does the server
know when to start its shutdown sequence? Since it hasitothe process of shutting down to have the final refer-
ence counts on the class factory released thrasglavokeClassObject, it cannot use the reference count to determine

DRAFT: October 24,1995 Page:107 Copyright © 199295 Microsoft Corporation
All Rights Reserved

(o]

0
n

The Component Object Model Specification The Component Object Model

when to start the shutdown process in the first place. Therefore there has to be another mechanism through which
shutdown is controlled which iglassFactory::LockServer.

4 Providing for Server Unloading

When a server has no objects to serve, has no locks, and is not being controlled by an endasapplds gener-

ally to server applications with user interface), then the server has no reason to stay loaded in memory and should
provide for unloading itself. This unloading provision differs between server types (DLL and EXE, but no difference
for renote servers) as much as class factory registration because whereas a server application can simply terminate
itself, an inprocess DLL must wait for someone else to explicitly unload it. Therefore the mechanisms for unloading
are different and are coversdparately in the following sections.

.1 Unloading In-Process Servers

As mentioned above, a DLL must wait for someone else to explicitly unload it. The server must, hdwaeses,
mechanism through which it indicates whether or not it should be unloaded. That mechanism is a function with the
namebliCanUnloadNow that is exported in the same manneD#éGetClassObject.

.1 DlICanUloadNow

HRESULT DIllICanUnloadNow(void)

DliCanUnloadNow is not provided by COM. Rather, it is a function implemented by and exported from DLLs support-
ing the Component Object ModelicanUnloadNow should be exported from DLLs designed to be dynamically load-
ed inCoGetClassObject Or CoLoadLibrary calls. A DLL is no longer in use when there are no existing instances of clas-
ses it manages; at this point, the DLL can be safely freed by calirgeUnusedLibraries. If the DLL loaded by
CoGetClassObject fails to exportdliCanUnloadNow, the DLL will only be unloaded whegouninitialize is called to re-
lease the COM libraries.

If this function returnss_ok, the duration within which it is in fact safe to unload the DLL depends on whether the
DLL is single or multithread awre. For single thread DLLs, it is safe to unload the DLL up until such time as the
thread on whictplicanunloadNow was invoked causes it to be otherwise (objects created, for example).

Return Value Meaning
S_OK The DLL may be unloaded now.
S_FALSE The DLL should not be unloaded at the present time.

.2 Unloading EXE Servers

A server application is responsible for unloading itself, simply by terminating and exitimgaits entry functiof®,

when the shutdown conditions are met, including whether or not the user has control. In the ongoing example of this
chapter, this would involve detecting the proper shutdown conditions whenever an object is destroyed (in the sug-
gestedobjectDestroyed function) or whenever the last lock is removedi(iassFactory:LockServer).

/lUser control flag
BOOL g_fUser=FALSE;

void ObjectDestroyed(void) {
g_cObj-;
if (OL==g_cObj && OL==g_clLock && !g_fUser)
//Begin shutdown
return;

}
HRESULT CTextRenderFactory::LockServer(BOOL fLock) {
if (fLock)
g_cLock++; /I for single threaded app only, of course
else {
g_clock--;

if (OL==g_cObj && OL==g_cLock && !g_fUser)
//Begin shutdown

}
return NOERROR;

% Under Microsoft Windows, the application usually starts shutdown by posting_aLose message to its main window, simulating what
happens when a user closes an application. This eventually causes the application tavexitithinction.
Copyright ©199295 Microsoft Corporation Page:108 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

}
If desired, you can of course centralize the shutdown conditions by artificially incrementing the object count in
IClassFactory::LockServer and directly callingobjectDestroyed. That way you do not need redundant code in both func-
tions.

During shutdown, tb server is responsible for callimgRevokeClassObject on all previously registered class factories
and for callingCouUninitialize like any COM application.

A server applicat-comt ool y§y fmleaeg si fa ifitu skee c o hoaws thevuses iob 1 e i n
perform some action which would necessitate the application stays running regardless of any other conditions. For
example, the server might be running to service an object for a client and the user opens another file in that same
applicaton. Since the user is the only agent who can close the file, the user control flag is set to TRUE meaning that

the user must explicitly close the application: no automatic shutdown is possible.

If a server is visible and under user control, there is tssipility that clients have connections to objects within that
server when the user explicitly closes the application. In that situation the server can take one of two actions:

1. Simply hide the application and reset the user control flag to FALSEthatlthe server will au-
tomatically shut down when all objects and locks are released.

2. Terminate the application but cabbisconnectObject for each object in service to forcibly discon-
nect all clients.

The second option, though more brutal, is necgssarsome situations. TheobisconnectObject function exists to
insure that al | external reference counts to the server
references and destroy all objects.

.1 CoDisconnectObject

HRESULT CoDisconnectObject(pUnk, dwReserved)

This function serves any extant remote connections that are being maintained on behalf of all the interface pointers
on this object. This is a very rude and privileged operation which dhgerierally only be invoked by the process in
which the object actually is managed by the object implementation itself.

The primary purpose of this operation is to give an application process certain and definite control over connections

to other processdabat may have been made from objects managed by the process. If the application process wishes
to exit, then we do not want it to be the case that t he
in fact keeps the process alive. Th@gess can call this function for each of the objects that it manages without
waiting for any confirmation from clients. Having thus released resources maintained by the remoting connections,

the application process can exit safely and cleanly. In effatiisconnectObject causes a controlled crash of the re-

moting connections to the object.

Argument Type Description

pUnk IUnknown * The object that we wish to disconnect. May be any interface on the object which

is polymorphic withiunknown, not necessarilthe exact interface returned by
Querylnterface(lID_IUnknown...).

dwReserved DWORD Reserved for future use; must be zero.
Return Value Meaning

S_OK Success.

E_UNEXPECTED An unspecified error occurred.

5 Object Handlers

As mentioned earlier this specification, object hargllieom one perspective are special cases -@ratess servers

that talk to their local or remote servers as well as a client. From a second perspective, an object handler is really just

a fancy proxy for a local or remote server that doedla kbhore than just forward calls through RPC. The latter view

is more precise arochiist escitmupriayl Ityh:e ap ifichcaen ddfercode t hat run

remote object; it can be uosxeyd oshyjneocnty.mbo uTshley hwaintchl etrh ema ye rhbr
simply forwards all of its calls on to the remote object, or it may implement some amount-trfvi@inclient side
processing. (I'n practice, the termtmprtoxiwiabj ehcatnd | ies smo
dl erd for the more general sitwuation.)

DRAFT: October 24,1995 Page:109 Copyright © 199295 Microsoft Corporation

All Rights Reserved

The Component Object Model Specification The Component Object Model

The structure of an object handler is exactly the same as-anfplocess server: an object handler implements an
object, a class factory, and the two functiaisetClassObject andDIliCanUnloadNow exactly as described above.

The key difference between handlers and full DLL servers (and simple proxy objects, for that matter) is the extent to
which they implement their respective objects. Whereas the full DLL server implements thietmobject (using

other objects internally, if desired), the handler only implements a partial object depending on a local or remote
server to complete the implementation. Again, the reasons for this is that sometimes a certain interface can only be
usefil when implemented on an-process object, such as when member functions of that interface contain parame-
ters that cannot be shared between processes. Thus the object in the handler would implement the restricted
in-process interface but leave all oth&@simplementation in the local or remote server.

6 Object Reusability

With objectoriented progamming it is often true that there already exists some object that implements some of what

you want to implement, and instead of rewriting all that code yourself you would like to reuse that other object for

your own implementation. Hence we have the defir object reusability and a number means to achieve it such as

i mpl ement ation inheritance, which is exploited in C++ a
Reusabilityo section of Chapter 2cantdrawbdcks are prokdems tbatdoi nher i
not make it a good object reusability mechanism for a system object model.

For that reason COM supports two notions of object reuse, containment and aggregation, that were also described in
Chapter 2. In that chapter veaw that containment, the most common and simplest for of object reuse, is where the
Afouter objecto simply uses other #fAinner objectsod for the
the inner objects. We also saw in Chapter 2 theonatif aggregation, where the outer object exposes interfaces from

inner objects as if the outer object implemented those interfaces itself. We brought up the catch that there has to be
some mechanism through which tlueknown behavior of inner object intkaces exposed in this manner is appropri-

ate to the outer object. We are now in a position to see exactly how the solution manifests itself.

The following sections treat Containment and Aggregation in more detail usirmgxirender object as an example.
To refresh our memory of this objectds pur potexeendert he f ol
object that implements theersistFile andiDataObject interfaces:

Read text from a file througPersistFile::Load

Write text to &file throughiPersistFile::Save

Accept a memory copy of the text throuigfataObject::SetData
Render a memory copy of the text throughtaObject::GetData

= =4 4 -4 N

Render metafile and bitmap images of the text also thromeghobject::GetData

.1 Reusability Through Containment

Let 6s say that when weTextRele Dbjeet we find thah phothen eobjdct ekidtsewith
CLSID_Textimage that is capable of acceptingxtethroughiDataObject::SetData but can do nothing more than render a

metafile or bitmap for that text througbataObject::GetData. T hMektimage obj ect cannot render m
the text and has no concept of reading or writing text to a fil¢.itBloes such a good job implementing the graph-

ical rendering that we wish to use it to help implementTuiRender object.

In this case tha@extRender object, when asked for a metafile or bitmap of its current texbamObject::GetData,
would delegte the rendering to th&extimage object. TextRender would first call T e x t | miDgtaQbjsct::SetData to
give it the most recent text (if it has changed since the last call) and thenecalt | mataObjsct::GetData asking
for the metafile or bitmajormat. This delegation is illustrated in Figure36

Copyright ©199295 Microsoft Corporation Page:110 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

oxtRender

IPersistFile O .- e SetData to tell

extlmage of text
IDataObject l

o | timag
. ined

IDataObject O ® , |
Use ata to retrieve

grapn al rer derings g)

Figure 6-3: An outer object that uses inner objects through
containment is a client of the inner objects.

To create this configuration, theextRender object would, during its own creation, instantiate thetimage object
with the following code, storing thee x t | miDataDbjsct pointer in arextimage field m_piDataObjimage:

/[TextRender initialization

HRESULT hr;

hr=CoCreatelnstance(CLSID_Textimage, CLSCTX_SERVER, NULL, IID_IDataObject, (void *)&m_plDataObjimage);

if (FAILED(hr))

/[Textimage not available, either fail or disable graphic rendering

/ISuccess: can now make use of Textimage object.
This code is included here to show thieLL paraneter in the middle of the call tooCreateinstance. Thi s i s t he HAoU
unknowno and is only applicable to aggregation. Containr
so this parameter should alwaysNgLL.

Now that theTextRender object h& T e x t | miDgtabbject it can delegate functionality tDextimage as needed. The
following pseudecode illustrates how e x t R e nb@@bjest::GetData function might be implemented:
HRESULT CTextRender::GetData(FORMATETC *pFE, STGMEDIUM *pSTM)

{
switch ([format in FORMATETC])
{

case <text>:
//Make copy of text and return

case <metafile>:

case <bitmap>:
llinsure Textimage has current text
m_plDataObjlmage->SetData(<copy of our current text>);
return m_plDataObjlmage->GetData(pFE, pSTM);

}

return <error>;

}
Note that if theTextimage object was modified at some later date to implement additional interfaces (such as
IPersistFile) or was updated to also support rendering copies of text in memory justebiigender, the code above
would still function perfectly. This is thekeyp o we r of COMbés reusability mechani
guagestyle implementation inheritance: the reused object can freely revise itself so long as it continues to provide
the exact behavior it has prahad in the past. Since thrextRender object never bothers to query for any other inter-
face onTextimage, and becausm®eexitt mawess ©ranycfarhat adher than metafile or bitmap, Tex-
timage can implement any number of newerfaces and support any number of new formatseibata. All Tex-
timage has to insure is that the behaviorsebata for text and the behavior adetbata for metafiles and bitmaps
remains the same.

Of course, this is just a simple example of containinR®eal components will generally be much more complex and

will generally make use of many inner objects and many more interfaces in this manner. But again, since the outer
object only depends on tHeehaviorof the inner object and does not care howaeg about performing its opera-

tions, the inner object can be modified without requiring any recompilation or any other changes to the outer object.
That is reusability at its finest.

DRAFT: October 24,1995 Page:111 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

.2 Reusability Through Aggregtion

Letds now say that we are planning to revisemenuim- Text Re
plementation in the previous section. At that time we find that the implementor of the Textimage object at the time

the implementor of the TextRender object sat down to work (or perhaps is making a revision of his object) that the
vendor of the Textmage object has improved Textlmage such that it implements everything that TextRender would

like to do through itsDataObject interface. That is, Textimage still accepts text throsgibata but has recently add-

ed the ability to make copies of its textcaprovide those copies througitData in addition to metafiles and bit-

maps.

I'n this case, the implementor of Text R®aadbectis axactlythe ees t h:

implementation that TextRender requires. What we, as the ingpltors of TextRender, would like to do now is
si mply exp o sieaaCbjetas ournangas shewn in Figuredt

e

TextRend \
IPersistFile O —8
Jse SetData to tell
Text of text.
N\
_ Textimage
IDataObject (Contained
pose X ageo
)ataObject direc I

Figure 6-4: When an inner object does a complete job implementing an
interface, outer objects may wat to expose the interface directly.

The only catch is that we must implement the proper behavior abthheown me mber s in the inner o
timage)DataObject interface:AddRef and Release have to affect the reference count on the outer objecttRiender)

and not the reference count of the inner object. Furthernguegyinterface has to be able to return the TextRender

0 b j elretsistrie interface. The solution is to inform the inner object that it is being used in an aggregation such

that when it seesunknown calls to its interfaces it can delegate those calls to the outer object.

One other catch remains: the outer object must have a means to control the lifetime of the inner object through
AddRef and Release as well as have a means to quéoy the interfaces that only exist on the inner object. For that
reason, the inner objentust implement an isolated versioniwfknown that controls the inner object exclusively and
never delegates to the outer objéfThis requires that the inner object separatesuhenown members of its func-

tional interfaces from an implementation iofknown that strictly controls the inner object itself. In other words, the
inner object, to support aggregation, must impletrie/o sets ofunknown functions: delegating and nedelegating.

This, then, is the mechanism for making aggregation work:

1. When creating the inner object, the outer object must pass itsiowmown to the inner object through the
pUnkOuter parameter ofClassFactory::Createlnstance. pUnkOuteri n t hi s case is called the #c

2. The inner object must cheglunkOuter in its implementation ofreatelnstance. If this parameter is neNuLL,
then the inner object knows it is bgircreated as part of an aggregate. If the inner object does not support ag-
gregation, then it must fail withLASS_E_NOAGGREGATION. If aggregation is supported, the inner object saves

punkOuter for later use, but does not caltidRef on it. The reasonistht t he i nner objectds |
contained within the outer objectbs I|ifeti me, so there
reference.

3. If the inner object detects a nWLL pUnkOuter in Createlnstance, and the call rguests the interfaceinknown
itself (as is almost always the case), the inner object must be sure to return-dslegatingunknown.

4. |If the inner object itself aggregates other objects (which is unknown to the outer object) it must pass the same
pUnkOuter pointer it receives down to the next inner object.

5. When the outer object is queried for an interface it exposes from the inner object, the outer object calls
Querylnterface in the nondelegatingunknown to obtain the pointer to return to theesit.

8 An interface with such amnknowni s someti mes called an fdinnerd interface on the aggre
interfaces on an objeakpcProxyButfer, for example, is one. This is a property of the interface itself, not the impletin@nta
Copyright ©199295 Microsoft Corporation Page:112 DRAFT: October 24,1995

All Rights Reserved

The Component Object Model The Component Object Model Specification

6. The inner object must delegate to the controlling unknown, thauigouter, all Iunknown calls occurring in any
interface it implements other than the ndele gatingunknown.

Through these steps, the inner object is made aware of the ou¢et,alijtains amunknown to which it can delegate
calls to insure proper behavior of reference counting @urdyinterface, and provides a way for the outer object to

control the inner objectdés |ifetime -Zeparately. The mech
TextRend Explicit
TextRender | Unknowr
IPersistFile O IUnknown
Use SetData to tel Functions
Textimage of tex 4

Delegate IUnknown
calls in IDataObject

IDataObject to TextRender.
0o e ate@image 1
aObjec ectly gregated)

Figure 6-5: Aggregation requires an explicit implementation oflunknown on the inner

object and delegation ofilUnknownf uncti on of any other interface to
IUnknown functions.

Now | etds hoskmath&awowwsm mani fests in code. First of f, t !

IDataObject i mp |l ement ati on and can thus remove i tmplnkoagatoi t 6s c|l

mai ntain the -delegatindUnkngwei6 s n on
class CTextRender : public IPersistFile {

private:
ULONG m_cRef; /IReference Count
char * m_pszText; /[Pointer to allocated text
ULONG m_cchText; /INumber of characters in m_pszText
IlUnknown * m_pUnkimage; /[Textimage IUnknown

/IOther internal member functions here

public:
[Constructor, Destructor]

/lOuter object IUnknown

HRESULT Querylnterface(REFIID iid, void ** ppv);
ULONG AddRef(void);

ULONG Release(void);

/lIPersistFile Member overrides
I

In the previous section we saw how the TextRender object would create a Textimage object for containment using
CoCreatelnstance With the punkOuter parameter set taULL. I n aggregati on, this parameter
IUnknown (Obtained using a typecast). fluermore, TextRender must requeshknown initially from Textlmage
(storing the pointer im_pUnkimage):

/[TextRender initialization

HRESULT hr;

hr=CoCreatelnstance(CLSID_Textimage, CLSCTX_ SERVER, (IUnknown *)this, IID_IUnknown, (void *)&m_pUnkimage);

if (FAILED(hr))

/[Textimage not available, either fail or disable graphic rendering
//[Success: can now make use of Textimage object.

No w, since Text Rende maadbceany langet, itshnaplementatiord @uerymerate will use
m_pUnkimage to obtain interface pointers:

HRESULT CTextRender::QueryInterface(REFIID iid, void ** ppv) {
*ppv=NULL,

/[This code assumes an overloaded == operator for GUIDs exists
if (IID_IUnknown==iid)
*ppv=(void *)(IUnknown *)this;

DRAFT: October 24,1995 Page:113 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

if (IID_IPersitFile==iid)
*ppv=(void *)(IPersistFile *)this;

if (IID_IDataObject==iid)
return m_pUnklmage->QuerylInterface(iid, ppv);

if (NULL==*ppv)

return E_NOINTERFACE; /fiid not supported.
/'l Any call to anyoneb6s AddRef is our own.
AddRef();
return NOERROR;

}

Note that delegatin@ueryinterface to the inner object is done only for those interfaces that the outer object knows it
wants to expose. The outer object should not delegate the query as a default case, for such blind forvaoding wi

an understanding of the semantic being forwarded will almost assuredly break the outer object should the inner one
be revised with new functionality.

.1 Caching interfaces on the inner object

In order to avoid reference counting cycles, special action is needed if the outer object wishes to cache pointers to the
inner objectbés interfaces.

Specifically, if the outer object wi shes t o edneedacee a t
from the inner object, the outer object should invekease on thepunkOuter that was given to the inner object at its
instantiation time.

/I Obtaining inner object interface pointer
pUnklnner->Querylnterface(lID_IFoo, &plFoo);
pUnkOuter->Release();

/I Releasing inner object interface pointer
pUnkOuter->AddRef();
plFoo->Release();

It is suggested that to allow inner objects to do better resource management that controlling objects delay the acquisi-
tion of cached pointers and release them when there is no possible use for them.

.2 Efficiency at any Deph of Aggregation

Aggregation has one interesting aspect when aggregates are used on more than one level of an object implementa-
tion. Imagine that the TextImage object in the previous example is itself an aggregate object shaheséner

objects. In such a case Textlmage will be passing some controlling unknown to those other inner objects. If Tex-
timage is not being aggregated by anyone else, then the controlling unknown is its own; otherwise it passes the
pUnkOuter from IClassFactory::Createlnstance on down the line, and any other inner objects that are aggregates them-
selves do the same.

The net result is that any object in an aggregation, no matter how deeply it is buried in the overall structure, will
almost always delegat®i rect |l y to the controlling unknown iif itéds
Therefore performance and efficiency of multiple levels of aggregation is not an issue. At worst each delegation is a

single extra function call.

7 Emulating Other Servers

The final topic related to COM Servers for this chapter is what is known as emuldtéoability for one server as-
sociated with oneLsID to emulate a server of anothersiD. A server that can emulate another is responsible for
providing compatible behavior for a different class through a different implementation. This forms the basis fo
lowing endusers the choice in which servers are used for which objects, as long as the behavior is compatible be-
tween those servers.

As far as COM is concerned, it only has to provide some way for a server to indicate that it wishes to emulate some
CLSID. To that end, the COM Library supplies the functimaTreatAsClass to establish an emulation that remains in

Copyright ©199295 Microsoft Corporation Page:114 DRAFT: October 24,1995
All Rights Reserved

(o]

The Component Object Model The Component Object Model Specification

effect (persistently) until canceled or changed. In addition it suppliestTreatAsClass to allow a caller to determine
if a given CLSID is narked for emulation.

.1 CoTreatAsClass
HRESULT CoTreatAsClass(clsidOld, clsidNew)

Establish or cancel an emulation relationship between two classes. Wialew is emulatingclsidold, calls to
CoGetClassObject With clsidold will transparently uselsidNew. Thus, for example, creating an objectctsfdold will in
fact launch the server fefsidNew and have it create the object instead.

This function does no validation on whether an appropriate registration entries existif@v.

An emulation is canceled by calling this function witBidold equal to the original class angsidNew set to
CLSID_NULL.

Argument Type Description

clsidold REFCID The class to be emulated.

clsidNew REFCID The class which should emulateidold. This replaces any existing emulation for
clsidold. May becLsID_NULL, in which case any existing emulation tadidold is
removed.

Return Value Meaning

S_OK Success.

CO_E_CLASSNOTREG to be described.

CO_E_READREGDB to be described.

CO_E_WRITEREGDB to be described.

E_UNEXPECTED An unspecified error occurred.

.2 CoGetTreatAsClass

HRESULT CoGetTreatAsClass(clsidOld, pclsidNew)

Return the existing emulation information for a given class. If no emulation entry existisidold thenclsidoid is
returned inpclsidNew.

Argument Type Description
clsidold REFCID The class for which the emulation information is to be retrieved.
pclsidNew CLSID * The place at which to return the class, if any, which emuladesld. clsidOld is
returned if there is no such clasgslsidNew may not benuLL.
Return Value Meaning
S_OK Success. A new, (possibly) differebtSID is returned throughpclisdNew.
S_FALSE Success. The class is emulating itself.
CO_E_READREGDB)
E_UNEXPECTED An unspecified error occurred.
How the COM Library implements these functions depends upon the structure of the system registry. For example,
under Microsoft Wi ndows, COM us e sLsiakeyiatdedfdrnh df:o n al subkey wu

TreatAs = {<new CLSID>}
When the Wi ndowsd CQddetdaszpjtctatempis t@locat® anservef focasip, it will always

call CoGetTreatAsClass to retrieve the actuatLSID to use. SincecoGetTreatAsClass will return the samecLsID as
passedinifnoemuat i on exi st s, COM doesnédét have to do any speci a

DRAFT: October 24,1995 Page:115 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

This page intentionally left blan

Copyright ©199295 Microsoft Corporation Page:116 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

This page intentionally left blan

DRAFT: October 24,1995 Page:117 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

7. Interface Remoting

In COM, clients communicate with objects solely through the use of vteded interface instances. The state of the
object is manipulated by invoking functions on those interfaces. For each interface method, the object anovides
implementation that does the appropriate manipulation of the object internals.

Interface remotingprovides the infrastructure and mechanisms to allow a method invocation to return an interface
pointer to an object that is in a different process, pesteyen on a different machine. The infrastructure that per-
forms the remoting of interfaces is transparent to both the client and the object server. Neither the client or object
server is necessarily aware that the other party is in fact in a differerdgstoc

This chapter first explains how interface remoting works giving mention to the interfaces and COM API functions
involved. The spefications for the interfaces and the API functions themselves are given later in this chapter. There

is also a brief discussion about concurrency management at the end of the chapter that involves an interface called
IMessageFilter.

1 How Interface Remoting Works

The crux of the problem to be addressed in interface remotmpeatated as follows:

AGi ven an al r e adnyerfacexcoméction getweee m aliere grocess and a server

process, how can a method invocation through that connection return a new interface pointer so as

to create a second remotederfaceconect i on bet ween the two processes?o0
We state the problem in this way so as to avoid for the moment the issue of how an initial connection is made be-
tween the client and the server process; we will return to that later.

Letds |l ook at an exampl e.) j ect in
. . . Client Process Server Process

server process which supports an interfee®, and that in-

terface of the object (andnknown) has sometime in the pas '””fi,“"w” unknown

been remoted to a client process through some means Not ko o opjet Z’

specified. In tle client process, there is an object proxy whi proxy Fee 7] server

supports the exact same interfaces as does the original se
object, but whosémplementation®f methods in those inter-
faces are special, in that they forward calls they receive on to calls on the thabdnmaplenentdions back in the

server object. We say that the method implementations in the object mranspalthe data, which is then conveyed

to the server process, where iuismarshaledT h at i s, Aimar shal ingo refaguments o t he |
for transmission to a remote process; Aunmar shal ingodo re
Notice that in a given call, the method arguments are marshaled and unmarshaled in one direction, while the return
values are marstied and unmarshaled in the other direction.

For concreteness, let us suppose thatrteinterface is defined as follows:

interface IFoo : lUnknown {
IBar * ReturnABar();

I
If the in the client procespFoo->ReturnABar() is invoked, then the objectrgxy will forward this call on to the
IFoo::ReturnABar() method in the server object, which will do whatever this method is supposed to do in order to come
up with some appropriatear*. The server object is then required to return this* back to theclient process. The
act of doing this will end up creating a second connection between the two processes:

It is the procedure by which this second connection is established

Client P S P
ent Frocess erverrrocess which is the subject of our discussion hereisTjprocess involves
IUnknown Unknown two StepS:
= orons Zr Foo o] f 1. On the server side, thear* is packaged or marshaled into a
sbject data packet.
2. The data packet is conveyed by some means to the client
Unkown process, where the data it contains is unmarshaled to create the
'“"(;""W" new object proxy.
e onea Zv'mo—sewer Theerm fimarshalingd is a general on
object dustry to the packaging of any particular data type, not just inter-

face pointers, into a data packet for transmission through an RPC
infrastructure. Each different data type has different ruleidav

Copyright ©199295 Microsoft Corporation Page:118 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

it is to marshaled: integers are to be stored in a certain way, strings are to be stored in a certairfwaikeetise,
marshaled interface patiers are to be stored in a certain way; the Component Object Model function
CoMarshalinterface() contains the knowledge of how this is to be done (note that we will in this document not mention
further any kind of marshaling other than marshaling of fat pointers; that subject is wakplored in existing

RPC systems).

The process begins with the code doing the marshaling of the retaemethterface. This code has in hand a pointer

to an interface that it knows in fact to belaar* and that it vishes to marshal. To do so it catlsMarshalinterface().

The first step incomarshalinterface() involves finding out whether the object of which this is an interface in fact sup-
portscustom object marshalinoft en simply referréed.tcCuasomcodfemnt mamastk
mechanism that permits an object to be in control of creation of remote object proxies to itself. In certain situations,
custom object marshaling can be used to create a more efficient object proxy than would othetWesedses?

Use of custoormar shal ing is completely optional on the objectds
marshaling, therstandard interface marshaling used to marshal thigar*. Standard interface marshaling uses a
systemprovided object proxy implementati in the client process. This standard implementation is a generic piece

of code, in that it can be used as the object proxy for any interface on any object. However, the act of marshaling

(and unmarshaling) method arguments and return values is inheirgetifacespecific, since it is highly sensitive to

the semantics and data types used in the particular methods in question. To accommodate this, the standard imple-
mentation dynamically loads in interfaspecific pieces of code as needed in order tthégparameter marshaling.

We shall discuss in great detail in a moment how standard interface marshaling works. First, however, we shall re-
view custom object marshaling, as this provides a solid framework in which standard marshaling can be better un-
derstmd.

2 Architecture of Custom Object Marshaling

Imagine that we are presently in a piece of code whose job it is to marshal an interface pointer that it has in hand. For
clarity, in what foll ows wedll refer (The génbral sasepsitteatcttee o f ¢ o
original marshaling stub does nsifatically®® know the particular interface identifient) to which the pointer con-

forms; thellD may be passed to this code as a sequardmeter. This is a common paradigm in the Component Ob-

ject Model. Extant examples of this paradigm include:

IUnknown::Querylnterface(REFIID riid, void** ppvObject);

IOleltemContainer::GetObject(..., REFIID riid, void** ppvObject);

IClassFactory::Createlnstance(..., REFIID riid, void** ppvNewlyCreatedObject);
Let us assume the slightly less general case where the marshaling stub in fact does know a little bit styotiathe
the interface in fact derives fromanknown. This is a requirement for remog: it is not possible to remote interfaces
which are not derived fronunknown.

To find out whether the object to which it has an interface supports custom marshaling, the original marshaling stub

simply does &Queryinterface() for the interfacemarshal. That is, an object signifies that it wishes to do custom mar-
shaling simply by implementing thearshal interface.imarshal is defined as follows:

51 |n fact, there exist several standard sets of rules, each promoted by a different organization. Two common such seisedinoles a

AiNet work Data Representationo (NDR) and fAExternal Data Rd&mnesentatio
dation and Sun Microsystems. ASN.1 is another standard for the same sort of technology.
2 Notice here that weod6re only discussing the marshal i mgpliepdnlyppthé nters to

marshaling of this data type. In general in a given remote procedure call the many other Kemdsvaliich appear as function parameters also
needs to be marshaled: strings, integers, structures, etc. We shall not concern ourselves here with such other daiastgaescbncentrate
our discussion on marshaling interface pointers.

8 j.e.: at compile time of the original marshaling stub

DRAFT: October 24,1995 Page:119 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

local,
object,
uuid(00000003-0000-0000-C000-000000000046)

interface IMarshal : lUnknown {
HRESULT GetUnmarshalClass ([in] REFIID riid, [in, unique] void *pv,
[in] DWORD dwDestContext, [in, unique] void *pvDestContext,
[in] DWORD mshlflags, [out] CLSID *pCid);
HRESULT GetMarshalSizeMax ([in] REFIID riid, [in, unique] void *pv,
[in] DWORD dwDestContext, [in, unique] void *pvDestContext,
[in] DWORD mshiflags, [out] DWORD *pSize);
HRESULT Marshallnterface ([in, unique] IStream *pStm, [in] REFIID riid, [in, unique] void *pv,
[in] DWORD dwDestContext, [in, unique] void *pvDestContext, [in] DWORD mshiflags);
HRESULT Unmarshalinterface ([in, unique] IStream *pStm, [in] REFIID riid, [out] void **ppv);
HRESULT ReleaseMarshalData ([in, unique] IStream *pStm);
HRESULT DisconnectObiject ([in] DWORD dwReserved);
}
The idea isthat ifthetpj ect says fAYes, I do want to do custom mar sha

this interface in order to carry out the task. The sequence of steps that carry this out is:

1. UsingGetunmarshalClass, the original marshaling stub asks thigext which kind of (i.e.: which class of) proxy
object it would like to have created on its behalf in the client process.

2. (optional on the part of the marshaling stub) Us@&@MarshalSizeMax, the stub asks the object how big of a
marshaling packet it will need. When asked, the objelitreturn an upper bound on the amount of space it will
need®

3. The marshaling stub allocates a marshaling packet of appropriate size, then crestesnanwvhich points into
the buffer. Unless in the previous step the marsgasitub asked the object for an upper bound on the space
needed, thestream* must be able to grow its underlying buffer dynamicallysagsam::write calls are made.

4. The original marshaling stub asks the object to marshal its datamsist@linterface.
We will discuss the methods of this interface in detail later in this chapter.

At this point, the contents of the memory buffer pointed to byisheam* together with the class tag returned in step

(1) comprises all the information necessary in orddre able to create the proxy object in the client process. It is the
nature of remoting and marshaling that foriginal mar s hal
communicate with the client process; recall that we are assuming thatiancionnection between the two process-

es had already been established. The marshaling stub now communicates to the client process, by whatever means is
appropriate, the class tag and the contents of the memory that contains the marshaled interfacénpbiatelient

process, the proxy object is created as an instance of the indicated class using the standard COM instance creation
paradigm.iMarshal is used as the initialization interface; the initialization methothigshal::Unmarshalinterface(). The

unmarshaling process looks something like the following:

void ExampleUnmarshal(CLSID& clsidProxyObiject, IStream* pstm, [ID& iidOriginallyMarshalled, void** ppvReturn)
{

IClassFactory* pcf;

IMarshal* pmsh;

CoGetClassObject(clsidProxyObject, CLSCTX_INPROC_HANDLER, NULL, IID_IClassFactory, (void**)&pcf);
pcf->Createlnstance(NULL, IID_IMarshal, (void**)pmsh);

pmsh->Unmarshallnterface(pstm, iidOriginallyMarshalled, ppvReturn);

pmsh->ReleaseMarshalData(pstm)

pmsh->Release();

pcf->Release();

}
There are searal important reasons why an object may choose to do custom marshaling.

1 It permits the server implementation, transparently to the client, to be in complete control of the nature of the
invocations that actually transition across the network. In désjgromponent architectures, one often runs into
a design tension between the interface which for simplicity and elegance one wishes to exhibit to client pro-
grammers and the interface that is necessary to achieve efficient invocations across the naeviomer, for
example, might naturally wish to operate in terms of srgedined simple queries and responses, whereas the
latter might wish to batch requests for efficient retrieval. The client and the network interfaces are in design ten-
sion; custom mashaling is the crucial hook that allows us to have our cake and eat it too by giving the server

8 That is, it is explicitly legal for the caller @fetmarshaisizemax() to allocate a fixed sizenarshaling buffer containing no more than the indicated
upper bound number of bytes.
Copyright ©199295 Microsoft Corporation Page:120 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

implementor the ability to tune the network interface without affecting the interface seen by its client.

When the object does custom marshaling, the cliemslasy "COM provided" communication to the original
object. I f the proxy wants to "keep in touch", it has
to the original object. Custom Object Marshaling can not be done on a per interface basise lmdxact iden-

tity is lost! Custom Object Marshaling is a sophisticated way for an object to pass a copy of an existing instance

of itself into another execution context.

1 Some objects are of the nature that once they have been createardheynutable: their internal state does not
subsequently change. Many monikers are an example of such objects. These sorts of objects can be efficiently
remoted by making independent copies of themselves in client processes. Custom marshaling isshismech
by which they can do that, yet have no other party be the wiser for it.

1 Objects which already are proxy objects can use custom marshaling to avoid creating proxies to proxies; new
proxies are instead shecircuited back to the original server. i§hs both an important efficiency and an im-
portant robustness consideration.

1 Object implementations whose whole state is kept in shared memory can often be remoted to other process on
the same machine by creating an object in the client that talkslglite¢he shared memory rather than back to
the original object. This can be a significant performance impreve, since access to the remoted object does
not result in context switches. The present Microsoft Compound File implementation is an ex&pigkcts
using this kind of custom marshaling.

3 Architecture of Standard Interface / Object Marshaling

If the object being marshal&dchooses not to implement custom object marshalifgdae f aul t 6 or fAstanda
marshaling technique is used. An important part of this standard marshaling technique involves locating and loading

the interfacespecific pieces of code that are responsible for marshaling and unmarshaling remote catEntem

of that interface. We call these interfasgpeci fi ¢ pieces of code used in standal
terface proxiesd and PP{ltnstineporfarst notto sohfusdtsrfaceproxisspvithctiedbject | y .

proxy, which relates to theshole representative in the client process, rather than just one interface on that repre-
sentative. We apologize for the subtleties of the terminology.)

The following figure gives an slightly simplified view of how the standard cliand servesside structuresooper-
ate.

Client Process Server Process
) RPC Channel stub manager
object proxy proxy manager (conceptual)
IRpcChannelBuffer é channel to
IUnknown stub mgr _colmmén
? is private
1 Y
| -l
|
i i‘—-lRpcProxyBuffer i 34— IRpcStubBuffer
H Jl J’ ks L IUnknown
~F J = =
‘13 O (JJ object
IFoo 1Bar\\ / IBaz ‘ interface stubs |Baz
interface proxies (for IFoo, IBar, and IBaz)

(for IFoo, IBar, and IBaz)

Simplified conceptual view of client- server remoting structures

When an interface of typi€oo needs to be remoted, a system registry is consulted underdekiegd fromiD_IFoo
to locate a class id that implements the interface proxy and interface stub for the given interface. Both the interface
proxies and the interface stubs for a given interface must be implemented by the same class. Most oftess, ithis cla

% Astute readers will notice an abuse of terminology here: what is really being marshaled in hand is one particular mtbdamigjexct, not the
whole object, thaigh in fact in the remote process access to the whole process is indeed obtained: new interfaces on the object will be mar-
shaled later as needed. We trust that this will not lead to too much confusion.

% Ot her RPC systems sometimes i nsteasd deea lslt utbrsaveomixShugseipen miteasd referéo st ub s 0
Aiproxy interfacesodo and Astub interfaceso instead of Ainterface proxi
DRAFT: October 24,1995 Page:121 Copyright © 199295 Microsoft Corporation

All Rights Reserved

The Component Object Model Specification The Component Object Model

automatically generated by a tool whose input is a description of the function signatures and semantics of the inter-
face, written in some fAinterface description | anguage, 0
and encouraged foraca acy 6s sake, the use of such a tool is by no
merely Component Object Model components which are used by the RPC infrastructure, and as such, can be written

in any manner desired so long as the correct eat@ontracts are uphel&rom a logical perspective, it is ultimately

the programmer who is the designer of a new interface who is responsible for ensuring that all interface proxies and

stubs that ever exist agree on the representation of their marstdatadThe programmer has the freedom to

achieve this by whatever means he sees fit, but with that freedom comes the responsibility for ensuring the compati-

bility.

I'n the figure, the Astub manager 0 i s 0ecomectaignttauhate@ i n t h
term to refer to the pieces of code and state on in the ssidemRPC infrastructure which service the remoting of a

given object, there is no direct requirement that the code and state take any particutresiééd formé” In con-

trast, on the client side, there is an identifiable piece of state and associated behavior which appears to the client code

to be the one, whole object. The term fiproxy manager o i s
ages the cliet object identity, etc., and which dynamically loads in interface proxies as neededuépgiiterface

calls). The proxy manager imptertation is intimate with the clieaside RPC channel implementation, and the

serverside RPC channel impheentation is intimate with the stub mager implementation.

Interface proxies are created by the cliside COM Library infrastructure using a code sequence resembling the
following:

clsid = LookUpInRegistry(key derived from iid)
CoGetClassObject(clsid, CLSCTX_SERVER, NULL, IID_IPSFactoryBuffer, &pPSFactory));
pPSFactory->CreateProxy(pUnkOuter, riid, &pProxy, &piid);

Interface stubs are created by the seside RPC infrastructure using a code sequence resembling:

clsid = LookUpInRegistry(key derived from iid)
CoGetClassObject(clsid, CLSCTX_SERVER, NULL, IID_IPSFactoryBuffer, &pPSFactory));
pPSFactory->CreateStub(iid, pUnkServer, &pStub);

In particular, notice that the class object is taHtedwith IPSFactoryBuffer interface rather than the more common
IClassFactory.

The interfaces mentioned here are as follows:

interface IPSFactoryBuffer : [Unknown {
HRESULT CreateProxy(pUnkOQuter, iid, ppProxy, ppv);
HRESULT CreateStub(iid, pUnkServer, ppStub);
h

interface IRpcChannelBuffer : lUnknown {
HRESULT GetBuffer(pMessage, riid);
HRESULT SendReceive(pMessage, pStatus);
HRESULT FreeBuffer(pMessage);
HRESULT GetDestCtx(pdwDestCtx, ppvDestCtx);
HRESULT IsConnected();

}

interface IRpcProxyBuffer : IlUnknown {
HRESULT Connect(pRpcChannelBuffer);

void Disconnect();
h
interface IRpcStubBuffer : lUnknown {

HRESULT Connect(pUnkServer);

void Disconnect();

HRESULT Invoke(pMessage, pChannel);

IRPCStubBuffer* IslIDSupported (iid);

ULONG CountRefs();

HRESULT DebugServerQuerylinterface(ppv);

void DebugServerRelease(pv);

h
Suppose an interface proxy receives a ImH®,¢tBaro0dBazimtheo cat i on
above figure). Thé nt er f ace proxyds i mplementation of this method

channel usingrpcChannelBuffer::GetBuffer(). The process of marshaling the arguments will copy data into the buffer.

57 There are, however, implied requirements for the existence of some piece of code / state that maeates $ké ofexternal remoting con-
nections for a given object. SeeLockobjectExternal(), for example.
Copyright ©199295 Microsoft Corporation Page:122 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

When marshaling is complete, the interfarexy invokesiRpcChannelBuffer::SendReceive() to send the method invo-
cation across the Awireo t o {Rix@anrelRiferrSendRpcave() detumg the con-er f ac e
tents of buffer into which the arguments were marshaled will haen beplaced by the return values marshaled

from the interface stub. The interface proxy unmarshals the return values, inrpkesannelBuffer::FreeBuffer() to

free the buffer, then returns the return values to the original caller of the method.

It is the implementation oRpcChannelBuffer::SendReceive() that actually sends the request over to the server process.

It is only the channel who knows or cares how to identify the server process and object within that process to which
the request shoulde sent; this encapsulation allows the architecture we are describing here to function for a variety
of different kinds of channels: inthmachine channels, intenachine channels (i.e.: across the network), etc. The
channel implementation knows how tovicard the request onto the appropriate stub manager object in the appropri-
ate process. From the perspective of this specification, the channel and the stub manager are intimate with each other
(and intimate with the proxy manager, for that matter). Throtgh intimacy, eventually the appropriate interface

stub receives ampcStubBuffer::invoke() call. The stub unmarshals the arguments from the provided buffer, invokes the
indicated method on the server object, and marshals the return values back émtcbaffer, allocated by a call to
IRpcChannelBuffer:GetBuffer(). The stub manager and the channel then cooperate to ferry the return data packet back to
the interface proxy, who is still in the middle @fpcChannelBuffer:SendReceive(). IRpcChannelBuffer:SendReceive()

returns to the proxy, and we proceed as just described above.

When created, interface proxies are always aggregdatedhe larger object proxy: at interfapeoxy-creation time,

the proxy is given thesnknown* to which it should delegate itueryinterface(), etc., calls, as per the usual aggregation
rules. When connected, the interface proxy is also given (WiitProxyBuffer::Connect()) a pointer to anRpcChannel-

Buffer interface instance. It is throughis pointer that the interface proxy actually sends calls to the server process.
Interface proxies bring a small twist to the normal everyday aggregation scenario. In aggregation, each interface
supported by an aggregateable object is classified as éiteex t er nal 6 or Ainternal . o0 Exter
They are the ones whose instances are exposed directly to the clients of the aggregate as wdilolay#tle case

that aQueryinterface() that requests an external interface of an aggregabgtt should be delegated by the object to

its controlling unknown (ditto foaddRref() and Release()). Internal interfaces, on the other hand, are never exposed to
outside clients. Instead, they are solely for the use of the controlling unknown in thadinipthe aggregated object.
Querylinterface() for internal interfaces shouldever be delegated to the controlling unknown (ditto again). In the
common uses of aggregation, tluaknown interface on the object is the only internal interface. The twigtithar-

face proxies bring is thakpcProxyBuffer is alsoan internal interface.

Interface stubs, by contrast with interface proxies, are not aggregated, since there is no need that they appear to some
external client to be part of a larger whole. Whenrmxgted, an interface stub is given (wiRpcStubBuffer::Connect())
a pointer to the server object to which they should forward invocations that they receive.

A given interface proxy instance can if it chooses to do so service more than one interfaoarfple, in the above

figure, one interface proxy could have chosen to serbiuth IFoo and iBar. To accomplish this, in addition to in-

stalling itself under the appropriate registry entries, the proxy should supgsyinterface()ing from one supporte

interface (and fromunknown and IRpcProxyBuffer) to the other interfaces, as usual. When the Proxy Manager in a
given object proxy finds that it needs the interface pro
goes out to the régfry to load in the appropriate code using the code sequence described above, it firspadogs a

Interface() for the new interface idii0) on all of itsexistinginterface proxies. If one of them supports the interface,

then it is used rather than ldad a new interface proxy.

Interface stub instances, too, can service more than one interface on a server object. However, the extent to which
they can do so is quite restricted: a given interface stub instance may support one or macesndely if that set

of interfaces has in fact a strict singtéheritance relationship. In short, a given ifitee stub needs to know how to
interpret a given method number that it is asked to invoke without at that same time also being told the iidterfac

(1iD) in which that method belongs; the stub must alreltigwthe relevantip. Thelib which an interface stub is

initially created to service is passed as parameteP3bBactoryBuffer::CreateStub(). After creation, the interface stub

may fromtime to time be asked usingpcStubBuffer::IsliDSupported() if it in fact would also like be used to service
anotheriD. If the stub also supports the secamd then it should return the appropriakpcStubBuffers for that1iD;
otherwise, the st buffer should returnuLL. This permits the stub manager in certain cases to optimize the loading

of interface stubs.

Both proxies and stubs will at various times have need to allocate or free memory. Interface proxies, for example,
will need to allocate memory in which to return out parameters to their caller. In this respect interface proxies and
interface stubs are just normal Component Object Model components, in that they should use the standard task allo-
cator; se&oGetMalloc(). See als the earlier discussion regarding specific rules for passjrgt, andin out pointers.

DRAFT: October 24,1995 Page:123 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

On Microsoft Wi ndows platfor ms, the fAkey derived from |
proxy/stub class is as follows:
Interfaces

{D}
ProxyStubClsid32 = {CLSID}

Here {cLsID} is a shorthand for any class id; the actual value of the unique id is put betwedys;theqg.
{DEADBEEF-DEAD-BEEF-C000-000000000046}; all digits are upper case hex and there can be no spaces. This string
format for a unique id (without thgd s) i s the sam& standard @nd és th® &Bult @f @3&ing-
FromCLSID routine.{liD} is a shorthand for an interface id; this is similagdosiD}; StringFromlID can be used to pro-
duce this string.

4 Archit ecture of Handler Marshaling

Handler marshaling is a third variation on marshaling, one closely related to standard marshaling. Colloquially, one
can think of it asa middle ground between raw standard marshaling and full custom marshaling.

In handlermarshaling, the object specifies that it would like to have some amount of-sidenttate; this is desig-

nated by the class returned IsydMarshalinfo::GetClassForHandler. However, this handler class rather than fully taking

over the remoting to the object instead aggregates in the default handler, which carries out the remoting in the stand-
ard manner as described above.

5 Standards for Marshaled Data Packets

In the architecture describedreenothing has yet to be said about representation or format standards for the data that
gets placed in marshaling packets. There is a good reason for this. In the Component Object Model architecture, the
only two parties that have to agree on what go&s & marshaling packet are the code that marshals the data into the
packet and the code that unmarshals it out again: the interface proxies and the interface stubs. So long as we are
dealing only with intramachine procedure calls (i.e.: naetwork), th@ we can reasonably assume that pairs of
interface proxies and stubs are always installggtioer on the machine. In this situation, we have no need to specify

a packet format standard; the packet format can safely be a private matter between thedwbquede.

However, once a network is involved, relying on the simultaneous installation of corresponding interface proxies and
stubs (on different machines) is no longer a reasonable thing to do. Thus, when the a method invocation is in fact
remoted over network, it is strongly recommended that the data marshaled into the packet to conform to a pub-
lished standard (NDR), though, as pointed out above, it is technically the inteffacei gner 6 s r esponsi
achieve this correspondence by whatever rmdansees fit.

6 Creating an Initial Connection Between Processes

Earlier we said we would later discuss how an initial remoting connection is established between two processes. It is
now time to have that discussion.

The real truth of the matter is that the initial connection is established by searesrautside of the architecture that
we have been discussing here. The minimal that is required is some primitiveucocation channel between the
two processes. As such, we cannot hope to discuss all the possibilities. But we will point out some ooesnon

One common approach is that initial connections are bsialol just like other connections: an interface pointer is

marshaled in the server process, the marshaled data packet is ferried the client process, and it is unmarshaled. The
only twist isthat the ferrying is done by some meaitBert han t he RPC mechani sm which we
There are many ways this could be accomplished. The most important, by far is one where the marshaled data is
passed as an oparameter from an invocation @nwelkknown endpoint to a Service Control Manager.

7 Marshaling Interface and Function Descriptions

Having discussed on a high level how various remoting related interfaces work together, we now present each of
them in detalil.

Copyright ©199295 Microsoft Corporation Page:124 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

.1 IPSFactoryBuffer Interface

IPSFactoryBuffer is the interface through which proxies and stubs are created. It is used to create proxies and stubs
that supporirRpcProxyBuffer and IRpcStubBuffer respectively. Each proxystub DLL must supponPSFactory interface

on the class object accessible throughbitsetClassObject() entry point. As was described above, the registry is con-
sulted under a key derived from the to be remoted in order to learn the proxy/stutssithat handles the remoting

of the indicated interface. The class object for this class is retrieved, asking for this interface. A proxy or a stub is
then instantiated as appropriate.

interface IPSFactoryBuffer : [Unknown {
HRESULT CreateProxy(pUnkOuter, iid, ppProxy, ppv);
HRESULT CreateStub(iid, pUnkServer, ppStub);
h

.1 IPSFactoryBuffer::CreateProxy

HRESULT IPSFactoryBuffer::CreateProxy(pUnkQuter, iid, ppProxy, ppv)

Create a new interface proxy object. This function returns botRpaRroxy instance and an instance of the interface
which the proxy is being created to service in the first place. The newly created proxy is initially in the unconnected
state.

Argument Type Description

pUnkOuter IUnknown * the controlling unknown of the aggregate in which the proxy is being created.

iid REFIID the interface id which the proxy is being created to service, and of which an
instance should be returned througi.

ppProxy IRpcProxyBuffert on exit, contains the newRpcProxyBuffer instance.

ppv void ** on exit, contains an interface pointer of type indicateddoy

return value ~ HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED, no others.

.2 IPSFactoryBuffer::Cre ateStub
HRESULT IPSFactoryBuffer::CreateStub(iid, pUnkServer, ppStub)
Create a new interface stub object. The stub is created in the connected state on the object ingicatsdny.

If punkServer is nonNULL, then before this function returns the stub must verify (by usimgyinterface()) that the
server object in fact supports the interface indicateddbyf it does not, then this function should fail with the error
E_NOINTERFACE.

Argument Type Desgiption
iid REFIID the interface that the stub is being created to service
pUnkServer IUnknown* the server object that is being remoted. The stub should delegate incoming calls

(seelrpcStubBuifer:Iinvoke()) to the appropriate interface on this objectnkserver
may legally benuLL, in which case the caller is responsible for later calling
IRpcStubBuffer::Connect() before usingRpcStubBuffer::Invoke().

ppStub IRpcStubBuffer* the place at which the newly create stub is to be returned.
return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED, no others.

.2 IRpcChannelBuffer interface

IRpcChannelBuffer is the interface through which interface proxies send calls through to the corresponding interface
stub. This interface is implemented by the RPC infrastructure. The infrastructure provides an instance of this inter-
face to interface proxies imRpcProxyBuffer::Connect(). The interface proxies hold on to this instance and use it each
time they receive an incoming call.
interface IRpcChannelBuffer : lUnknown {

HRESULT GetBuffer(pMessage, riid);

HRESULT SendReceive(pMessage, pStatus);

HRESULT FreeBuffer(pMessage);

HRESULT GetDestCtx(pdwDestCtx, ppvDestCtx);

HRESULT IsConnected();

I

DRAFT: October 24,1995 Page:125 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

.1 RPCOLEMESSAGE and related structures

Common to several of the methodsmpcChannelBuffer is a data structure of typ@PCOLEMESSAGE. This structure is
defined as is show below. The structure is to be packed so that there are no holes in its memory layout.
typedef struct RPCOLEMESSAGE {

void * reservedl;

RPCOLEDATAREP dataRepresentation; //in NDR transfer syntax: info about endianness, etc.
void * pvBuffer; /I memory buffer used for marshalling

ULONG cbBuffer; /I size of the marshalling buffer

ULONG iMethod; /l the method number being invoked

void * reserved2[5];

ULONG rpcFlags;

} on the ultimate destination machine MESSAGE;®

The most significant ember of this structure [&Buifer. It is through the memory buffer to whighBuffer points that
marshaled method arguments are transfergslifer is used to indicate the size of the buffetethod is indicates a
particular method number within thatérface being invoked. Thied of that interface is identified through other
means: on the client side as a parameteasetBuffer(), and on the server side as part of the internal state of each in-
terface stub.

At all times all reserved values in thisistture are to be initialized to zero by AR Ginfrastructure pares (i.e.:

parties other than the channel / RPC runtime implementor) who alleeat@LEMESSAGE strudures. However, the

RPC channel (more generally, the RPC runtime infrastructureeés tih modify these reserved fields. Therefore,
once initialized, the reserved fields must be ignored by the initializing code; they cannot be relied on to remain as
zero. Further, there are very carefully specified rules as to whaevah these structes may or may not be modi-

fied at various times and by which parties. In almost all cases, aside from actually reading and writing data from the
marshaling buffer, which is done by proxies and stubs, only the channel may change these fields. Seedhal indivi
method descriptions for details.

Readers familiar with the connectianr i ent ed DCE pr ot ocol may notice that
ing the arguments, the particular set of rules and conventions according to which data is marshetexkpiscitly

called out. Architecturally speaking, it is only the interface proxy for a givenfaderand its corresponding interface

stub that cares at all about what set of marshaling rules is in fact used. However, in the general case these interfac
proxies and stubs may be installed on differenchi@es with a network in the middle, be written by different de-
velopment organizations on different openg systems, etc. Accordingly, in cases where the author of an interface
proxy for a giveniib cannot guarantee that all copies of the corresponding interface stub are in fact always revised
and updated in syinrony with his interface proxy, a wellefined convention should be used for the transfer syntax.

Indeed, formal transfer syntax standards ext f or t hi s purpose. The one most <con
Data Representationd (NDR), originally dhravced aodpadaptedoy Ap o

by the Open Software Foundation as part of their Distributed Computingdamént (DCE). The Windows NT
operating system also uses NDR in its RPC implementation. Unless very good reasons exist to do otherwise, pro-
grammers are encouraged to use the NDR transfer syntax.

When NDR transfer syntax is used (and whethes ih use ornot is implicitly known by the proxy or stub), the
memberdataRepresentation provides further information about the rules by which data in the buffer is marshaled.
NDR is =wafAmonitial 0 standard, me a n i n glardt fér ahings llike toyt@rder, t h a n
character set, etc., multiple standards (a fixed set of them) are accommodated. Specifically, this is accommodated by

a Areader make righto policy: the writer [suppatedsvaria-l er of

tions and the reader / unmarshaler is expected to be able to read any of them. The particular data type in use is con-
veyed in arRPCOLEDATAREP structure, which is defined as follows. Note that this structure, too, is packed; the size
of theentire structure is eactly four bytes. The actual layout of the structure in all cases always corresponds to the
data representan value as defined in the DCE standard; the particular tstreshown here is equivalent to that
| ayout i n niMéotherconsnori dordpslersa

typedef RPCOLEDATAREP {

UINT uCharacterRep 14, /I least signficant nibble of first byte
UINT uByteOrder 1 4; /I most signficant nibble of first byte
BYTE uFloatRep;

BYTE uReserved;

BYTE uReserved?2;

} RPCOLEDATAREP;

The values which may legally be found in these fields are as shown in T.dBlether information on the interpreta-
tion of this field can be found in the NDR Transfer Syntax standards documentation.

% The layout of this structure is as odd as it is for historical reasons. Apologies are extended to those whose designaaesifietided.

Copyright ©199295 Microsoft Corporation Page:126 DRAFT: October 24,1995
All Rights Reserved

t

The Component Object Model The Component Object Model Specification

Field Name Meaning of Field Value in field Interpretation
uCharacterRep determines interpretation of sin- 0 ASCII
gle-byte-character valued and sin- 1 EBCDIC
gle-byte string valued entities
uByteOrder integer and floating point byte order 0 Big-endian (Motorola)
1 Little-endian (Intel)
uFloatRep representation of floating point numbers 0 IEEE
1 VAX
2 Cray
3 IBM

Table 1. Interpretation of dataPresentation

.2 IRpcChannelBuffer::GetBuffer

HRESULT IRpcChannelBuffer::GetBuffer(pMessage, iid)

This method returns a buffer into which data can be marshaled for subsequent transmission over the wire. It is used
both by interface proxies and by interface stubs, the former to marshal the incoming arguments for transmission to
the server, and the latteo marshal the return values back to the client.

Upon receipt of an incoming call from the client of the proxy object, interface proxiesetBeéfer() to get a buffer

into which they can marshaling the incoming arguments. A new buffer must be obtaireery call operation; old

buffers cannot be reused by the interface proxy. The proxy needs to ask for and correctly manage a new buffer even
if he himself does not have arguments to marshal (i.eidaargument listf® Having marshaled the arguments, the
interface proxy then callsendReceive() to actually invoke the operation. Upon raturom SendReceive(), the buffer

no longer contains the marshaled arguments but instead contains the marshaled return values (and out parameter
values). The interface proxy unmarshals these values, malBuffer() to free the buffer, then returns to italling

client.

On the server side (in interface stubs), the sequence is somewhat different. The server side will not be explored fur-
ther here; see instead the descriptiomRpéStubBuifer:Invoke() for details.

On the client side, th&®&PCOLEMESSAGE structure argument tGetBuffer() has been allocated and imlized by the

caller (or by some other party on the c abersefths strudueeh al f) .
as follows.

Member Name Value to initalize to

reserved members as always, reserved values must be initialized to zera .

pvBuffer must beNULL.

chBuffer the size in bytes that the channel should allocate for the buffer; that is, the

maximum size in bytes neediéo marshal the arguments. The interface proxy
will have determined this information by considering the function signature
the particular argument values passed in.

It is explicitly legal to have this value be zero, indicating that that the callex (
not himself require a memory buffer.

iMethod the zerebased method number in the interfagavhich is being invoked

dataRepresentation if NDR transfer syntax is being used, then this indicates the byte order, etc.
which the caller will marshal data into the returned buffer.

rpcFlags § Exact values to be listed here.

If the GetBuffer() function is successful, then upon function exisuffer will have been changed by the channel to
point to a memory buffer of (at least)Buffer bytes in size into which the method arguments can now be marshaled
(if cbBuffer was zero pvBuffer may or may not beiuLL). The reserved fields in thRPCOLEMESSAGE structure may or

may not have been changed by the channel. However, neithessilitzr nor iMethod fields 0of RPCOLEMESSAGE will

have been changed; the channel treats these asongad® Furthermore, until such time as the na#ocated
memory buffer is subsequently freed (Se@dReceive() andFreeBuffer()), no party other than the channel may modify

% This permits the channel to hied-the-scenes add additional space into the buffer. Such a capability is needed, for example, in order to support
remote debugging.
0 The fact thatbsuffer is unchanged can be of particular use terifidce stubs. SeepcstubBuffer:invoke().

DRAFT: October 24,1995 Page:127 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

any of the data accessible frgmessage with the lone exceptions of the data pointed toptBuffer and the member
cbBuffer, which may be modified only in limited ways; see below.

The arguments taetBuffer() are as follows:

Argument Type Description

pMessage RPCOLEMESSAGE * a message structureitialized as discussed above.

iid REFIID the interface identifier of the interface being invoked.
return value HRESULT S_OK, E_OUTOFMEMORY, E_UNEXPECTED

.3 IRpcChannelBuffer::SendReceive

HRESULT IRpcChannelBuffer::SendReceive(pMessage, pStatus)

Cause an invocation to be sent across to the server process. The caller will have first obtained access to a transmis-
sion packet in which to marshal the arguments by callRpgChannelBuffer::GetBuffer(). The sameMessage structure
passed as an argument into that function is passed here to the channel a second time.

In the intervening time period, the method arguments will have been marshaled into the buffer pointetde by
sage->pvBuffer. Howeve, the pvBuffer pointer parameter must on entry$endReceive() be exactly as it was when re-
turned fromaGetBuffer(). That is, it must point to the start of the memory buffer. The caller should in addition set
pMessage->cbBuffer to the number of bytes acilly written into the buffer (zero is explicitly a legal value). No other
values accessible fropmessage may be different than they were on exit fraaeBuffer().

Upon successfulexit from SendReceive(), the incoming buffer pointed to byBuffer will have been freed by the
channel. In its place will be found a buffer containing the marshaled return values / out parameters from the interface
stub: pMessage->pvBuffer points to the new buffer, angMessage->cbBuffer indicates the size thereof. If there ae n

such return values, th@mMessage->cbBuffer is set to zero, whileMessage->pvBuffer may or may not b&uLL.

On error exit from SendReceive(),’! the in@ming buffer pointed to byvBuffer may or may not have been freed. If it

has been freed, then on error eitessage->pvBuffer is set toNULL andpMessage->cbBuffer is set to zero. If in contrast,
pMessage->pvBuffer iS on error exit notNULL, then that pinter, the data to which it points, and the vahMmes-
sage->cbBuffer will contain exactly as they did on entry; that is, the marshalednaggts will not have been touched.

Thus, on error exit frorsendReceive(), in N0 case are any marshakedurn value passed back; if a marshaling buffer

is in fact returned, then it contains the marshaeglmentsas they were on entry.

The exact cases on error exit when the incoming buffer has or has not been freed needs careful attention. There are
three cases:

1) The channel implementation knows with certainty either that all of the incoming data was fulbcess
unmarshaled or that if any errors occurred during unmarshaling that thedetetub correctly cleaned
up. In practical terms, this condition is equat to the stub manager having actually calkgtStub-
Buffer::Invoke() on the appropriate interface stub.

In this case, on exit frorsendReceive() the incoming argments willalwayshave been freed.

2) The channel implementation knows with certainty the situation in case hohascurred.
In this case, on exit fromendReceive(), the incoming arguments witleverhave been freed.

3) The channel implementation does not know with certainty that edhére above two cases has oc-
curred.

In this case, on exit frorsendReceive(), the incoming arguments widllwayshave been freed. This is a
possible resource leakage (due to, for exampdegleaseMarshalData() calls that never get made), but it
safely avoids freeing resources that should not be freed.

If pMessage->pvBuffer is returned as noNULL, then the caller is responsible for subsequently freeing itFieeBufi-
er(). A returned nofNULL pMessage->pvBuffer may in general legally be (and will commigrbe, the success case)
different than the (nomuLL) value on entry; i.e.: the buffer may be legally belleaed. Further, between the re-
turn fromsendReceive() and the subsequent freeing call no data accessible fxessage may be modied, with the
possible exception of the data actually in the memory buffer.

Upon successful exit frorBendReceive(), the pMessage->dataRepresentation field will have been modified to contain
whatever was returned by the interface stub in field of the same nameovaksét toIRpcStubBuffer:Invoke(). This is

" That is, ifsendreceive() returns an error. Note that this does NOT indicate an error returned from the function invocation on the server object, for
in that casesendReceive() returns success; rather, it indicates an error that occurred somewhere in the RPC transmission.
Copyright ©199295 Microsoft Corporation Page:128 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

particularly important when NDR transfer syntax is usedda@&sRepresentation indicates critical things (such as byte
order) which apply to the marshaled return / out values. Upon error exit fgeimReceive(), pMess-
age->dataRepresentation is undefined.

Argument Type Description
pMessage RPCOLEMESSAGE * message structure containing info to transmit to server.
pStatus ULONG * may legally benuLL. If non-NULL, then if either 1) an RR@frastruc

ture-detectedserverobject fault (e.g.: a server object bug caused an ex-
ception which was caught by the RPC infrastructure) or 2) an RPC
communications failure occurs, then at this location a status code is
written which describes what happened. In the two error cHse®r-
rorse_RPCFAULT andE_RPCSTATUS are (respectively) returned (and
are always returned when these errors occur, irrespective of the
NULL-ness ofpStatus).

return value HRESULT S_OK, E_RPCFAULT, E_RPCSTATUS

.4 IRpcChannelBuffer::FreeBuffer
HRESULT IRpcChannelBuffer::FreeBuffer(pMessage)
Free a memory buffer ipMessage->pvBuffer that was previously allocated by the channel.

At various times the RPC channel allocates a memory buffer and returns control of same to a calling client. Both
GetBuffer() and SendReceive() do so, for examplerreeBuffer() is the means by which said calling client informs the
channel that it is done i the buffer.

On function entry, the buffer which is to be freegNgssage->pvBuffer, which explicitly may or may not breuLL. If
pMessage->pvBuffer iS NONNULL, thenFreeBuffer() frees the bufferNnuLLs the pointer, and retur’&ERROR,; if pMes-
sage->pvBuffer is NULL, then FreeBuffer() simply returm8OERROR (i.e.: passingiULL is notan error). Thus, on func-
tion exit, pMessage->pvBuffer is alwaysNULL. Notice thapMessage->cbBuffer is never looked at or changed.

There are strict rules as to what datxessible frompMessage may have been modified in the intervening time be-

tween the time the buffer was allocated and the cattdeBuffer(). In short, very little modification is permitted; see
above and below for precise details.

Argument Type Description
pMessage RPCOLEMESSAGE * pointer to structure containing pointer to buffer to free.
return value HRESULT S_OK, E_UNEXPECTED

.5 IRpcChannelBuffer::GetDestCtx

HRESULT IRpcChannelBu#r::GetDestCtx(pdwDestCtx, ppvDestCtx)

Return the destination context for this RPC channel. The destination context here is as specified in the description of
theIMarshal interface.

DRAFT: October 24,1995 Page:129 Copyright © 199295 Microsoft Corporation
All Rights Reserved

The Component Object Model Specification The Component Object Model

Argument Type Description
pdwDestCtx DWORD * the place at which the desttion context is to be returned.
ppvDestCtx void ** May beNULL. If non-NULL, then this is the place at which auxiliary information

associated with certain destination contexts will be returned. Interface proxies
may not hold on to this returned pointartheir internal state; rather, they must
assume that a subsequent callRgcChannel::Call() may in fact invalidate a pre-
viously returned destiimn context’?

return value HRESULT S_OK, E_OUTOFMEMORY, E_UNEXPECTED, but no others.

.6 IRpcChannelBuffer::IsConnected
HRESULT IRpcChannelBffer::IsConnected()

Answers as to whether the RPC channel is still connected to the other side. A negative reply is definitive: the con-
nection to server end has definitely been terminated. A positive reply is tentative: the server end may or may not be
still up. Interface proxies can if they wish use this method as an optimization by which they can quickly return an
error condition.

Argument Type Description

return value HRESULT S_OK, S_FALSE. No error values may be returned.

.3 IRpcProxyBuffer Interface

IRpcProxyBuffer interface is the interface by which the chsidie infrastructure (i.e. the proxy manager) talks to the
interface proxy instances that it manages. When created, proxies are aggregated into some larger object as per the
normal creation process (whepenkOuter in IPSFactoryBuffer::CreateProxy() iS nonNULL). The controlling unknown

will then Queryinterface() to the interface that it wishes to expose from the interface proxy.

interface IRpcProxyBuffer : IlUnknown {
virtual HRESULT Connect(pRpcChannelBuffer) = 0;
virtual void Disconnect() = 0;

h
.1 IRpcProxyBuffer::Connect

HRESULT IRpcProxyBuffer::Connect(pRpcChannelBuffer)

Connect the interface proxy to the indicated RPC channel. The proxy should hold on to the ctuare#ing it as
per the usual rules. If the proxy is currently conedctthen this call fails (witlE_UNEXPECTED); call Disconnect()
first if in doubt.

Argument Type Description

pRpcChannelBuffer IRpcChannelBuffer* the RPC channel that the interface proxy is to use to effect invocations
to the server object. May not Ine/LL.

return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED

.2 IRpcProxyBuffer::Disconnect

void IRpcProxyBuffer::Disconnect()

Informs the proxy that it should disconnect itself from any RPC channel that it may currently be holding on to. This
will involve Release()ing thelRpcChannel pointer to counteract thiddref() done inIRpcProxy::Connect().

Notice that this function doaw®t return a value.

4 IRpcStubBuffer interface

IRpcStubBuffer is the interface used on the server side by the RPC rumtiireestructure (herein referred to loosely as
the fichannel) to communicate with interface stubs that

2 |t is possible that in the future a less restrictive rule as to the duration in which the interface proxy may holdoeside: may be estab-
lished, such as (perhaps) guaranteeing that the pointer is valid for the lifetime of the interface proxyoiteelkr, as it stands today, the rule,
as stated here, is in fact the law.

Copyright ©199295 Microsoft Corporation Page:130 DRAFT: October 24,1995
All Rights Reserved

The Component Object Model The Component Object Model Specification

interface IRpcStubBuffer : lUnknown {

virtual HRESULT Connect(pUnkServer) = 0;

virtual void Disconnect() = 0;

virtual HRESULT Invoke(pMessage, pChannel) = 0;
virtual IRpcStubBuffer* IsliDSupported(iid) = 0;

virtual ULONG CountRefs() = 0;

virtual HRESULT DebugServerQuerylinterface(ppv) = 0;
virtual void DebugServerRelease(pv) = 0;

I

.1 IR pcStubBuffer::Connect

HRESULT IRpcStubBuffer::Connect(pUnkServer)

Informs the interface stub of server object to which it is now to be connected, and to which it should forward all
subsequentnvoke() operations. Thestub will have toQueryinterface() on pUnkServer to obtain access to appropriate
interfaces. The stub will of course follow the normaldRref() rules when it stores pointers to the server object in its
internal state.

If the stub is currently connectetthen this call fails witlE_UNEXPECTED.

Argument Type Description
pUnkServer IUnknown * the new server object to which this stub is now to be connected.
return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED

.2 IRpcStubBuffer::Disconnect

void IRpcStubBuffer::Disconnect()

Informs the stub that it should disconnect itself from any server object that it may currently be holding on to. Notice
that this function does not return a value.

.3 IRpcStubBuffer::Invoke

HRESULT IRpcStubBuffer::Invoke(pMessage, pChannel)

Invoke thepMmessage-> i Me t hmetltod lin the server object interface instance to which this interface stub is currently
connected. The RPC rtime infrast ruct ur e (the HAchannel 0) call s this meth
receipt of an incoming request from some remote client. See the discussion ofi28aggarding how interface

stubs implicitly know theiD which they are servicing.

On entry, the members pfflessage are set as follows:

Member Name Value on entry to Invoke()

reserved members indeterminate. These members are neither to be read nor to be changed b
stub.

pvBuffer points to a buffer whicleontains the marshaled incoming arguments. In the «

that there are no such arguments (kcBBuffer == 0), pvBuffer may beNULL, but
will not necessarily be so.

chBuffer the size in bytes of the memory buffer to whisBuffer points. IfpvBuffer is
NULL, thencbBuffer will be zero (but the converse is not necessarily true, as v
mentioned irpvBuffer).

iMethod the zerebased method number in the interface which is being invoked

dataRepresentation if NDR transfer syntax is being used, then this indicates the byte order, etc.
according to which the data jnBuffer has been marshaled.

rpcFlags indeterminate. Neither to be read nor to be changed by the stub.

The stub is to do the following:
1 unmashal the incoming arguments,
1 invoke the designated operation in the server object,
1 askthe channel to allocate a new buffer for the return values and out values,
1 marshal the return values and out values into the buffer, then

DRAFT: October 24,1995 Page:131 Copyright © 199295 Microsoft Corporation
All Rights Reserved

