
 Copyright © 1992-95 Microsoft Corporation. All Rights Reserved

The Component Object Model Specification
Version 0.9

October 24, 1995

This document contains the specification to the Component Object Model (COM), an architecture and supporting

infrastructure for building, using, and evolving component software in a robust manner. This specification contains

the standard APIs supported by the COM Library, the standard suites of interfaces supported or used by software

written in a COM environment, along with the network protocols used by COM in support of distributed computing.

This specification is still in draft form, and thus subject to change.

Note: This document is an early release of the final specification. It is

meant to specify and accompany software that is still in development.

Some of the information in this documentation may be inaccurate or

may not be an accurate representation of the functionality of the final

specification or software. Microsoft assumes no responsibility for any

damages that might occur either directly or indirectly from these

inaccuracies. Microsoft may have trademarks, copyrights, patents or

pending patent applications, or other intellectual property rights

covering subject matter in this document. The furnishing of this

document does not give you a license to these trademarks, copyrights,

patents, or other intellectual property rights.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: ii DRAFT: October 24, 1995

 All Rights Reserved

The Component Object Model Specification

Draft Version 0.9, October 24, 1995

Microsoft Corporation and Digital Equipment Corporation

Copyright © 1992-95 Microsoft Corporation.

Microsoft does not make any representation or warranty regarding the Specification or any product or item devel-

oped based on the Specification. Microsoft disclaims all express and implied warranties, including but not limited

to the implied warranties of merchantability, fitness for a particular purpose and freedom from infringement. With-

out limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item devel-

oped based on the Specification, or any portion of it, will not infringe any copyright, patent, trade secret or other

intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such

intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in

connection with the use of the Specification, including liability for lost profit, business interruption, or any other

damages whatsoever. Some states do not allow the exclusion or limitation of liability for consequential or incidental

damages; the above limitation may not apply to you.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 3 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Table of Contents

How to Read This Document 5

Part I: Component Object Model Introduction 7

1. Introduction 9

1.1 Challenges Facing The Software Industry ... 9

1.2 The Solution: Component Software.. 10

1.3 The Component Software Solution: OLEôs COM .. 12

1.4 Objects and Interfaces .. 18

1.5 Clients, Servers, and Object Implementors .. 23

1.6 The COM Library ... 26

1.7 COM as a Foundation... 27

Part II: Component Object Model Programming Interface 31

2. Component Object Model Technical Overview 33

2.1 Objects and Interfaces .. 33

2.2 COM Application Responsibilities ... 38

2.3 The COM Client/Server Model ... 39

2.4 Object Reusability .. 45

2.5 Connectable Objects and Events ... 47

2.6 Persistent Storage.. 48

2.7 Persistent, Intelligent Names: Monikers ... 53

2.8 Uniform Data Transfer ... 55

3. Objects And Interfaces 59

3.1 Interfaces ... 59

3.2 Globally Unique Identifiers ... 64

3.3 The IUnknown Interface .. 65

3.4 Error Codes and Error Handling ... 69

3.5 Enumerators and Enumerator Interfaces .. 73

3.6 Designing and Implementing Objects.. i

4. COM Applications 81

4.1 Verifying the COM Library Version .. 81

4.2 Library Initialization / Uninitialization ... 81

4.3 Memory Management .. 82

4.4 Memory Allocation Example .. 85

5. COM Clients 87

5.1 Identifying the Object Class .. 87

5.2 Creating the Object ... 88

5.3 Obtaining the Class Factory Object for a CLSID ... i

5.4 Initializing the Object .. i

5.5 Managing the Object .. 94

5.6 Releasing the Object ... 96

5.7 Server Management .. 96

6. COM Servers 98

6.1 Identifying and Registering an Object Class .. 98

6.2 Implementing the Class Factory .. 101

6.3 Exposing the Class Factory.. 103

6.4 Providing for Server Unloading .. 108

6.5 Object Handlers ... i

6.6 Object Reusability .. 110

6.7 Emulating Other Servers .. 114

7. Interface Remoting 118

7.1 How Interface Remoting Works.. 118

7.2 Architecture of Custom Object Marshaling ... 119

7.3 Architecture of Standard Interface / Object Marshaling ... 121

7.4 Architecture of Handler Marshaling ... 124

7.5 Standards for Marshaled Data Packets ... 124

7.6 Creating an Initial Connection Between Processes ... 124

7.7 Marshaling Interface and Function Descriptions ... 124

7.8 Marshaling - Related API Functions... 134

7.9 IMarshal interface ... 138

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 4 DRAFT: October 24, 1995

 All Rights Reserved

7.10 IStdMarshalInfo interface .. 141

7.11 Support for Remote Debugging .. 141

8. Security 151

8.1 Activation Security ... 151

8.2 Call Security .. 153

Part III: Component Object Model Protocols and Services 162

9. Connectable Objects 164

9.1 The IConnectionPoint Interface .. 164

9.2 The IConnectionPointContainer Interface .. i

9.3 The IEnumConnectionPoints Interface... 168

9.4 The IEnumConnections Interface ... i

10. Persistent Storage 173

11. Persistent Intelligent Names: Monikers 175

11.1 Overview ... 175

11.2 IMoniker interface and Core Monikers .. 176

11.2 ... 176

12. Uniform Data Transfer 203

Part IV: Type Information 205

13. Interface Definition Language 207

13.1 Object RPC IDL Extensions .. 207

13.2 Mapping from ORPC IDL to DCE RPC IDL. ... 212

14. Type Libraries 214

Part V: The COM Library 216

15. Component Object Model Network Protocol 218

15.1 Overview ... 218

15.2 Data types and structures ... 222

15.3 IRemUnknown interface .. 228

15.4 The Object Exporter .. i

15.4 ... 231

15.5 Service Control Manager .. i

15.6 Wrapping DCE RPC calls to interoperate with ORPC ... 242

15.7 Implementing ORPC in RPC... 243

Appendix B: Bibliography 245

Appendix C: Specification Revision History 247

Appendix D: Index 249

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 5 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

How to Read This Document

This specification is written to help a variety of readers understand the design and implementation of the Component

Object Model (referred to herein simply as COM) as much as they would like. The presentation of COM gradually

progresses from high-level overviews to COM benefits and eventually into the underlying mechanisms and pro-

gramming interfaces to COM. This section is intended to help the reader determine what parts of this document to

read.

This specification is divided into four parts, each of which contains one or more chapters. Part I is an overview and

introduction. Chapter 1, the only chapter in Part I, explains at a high level the motivations of COM and the problems

it addresses. It describes what COM is and its features, and describes the major benefits and advantages of COM. All

readers should be interested in this chapter.

Part II contains the programming interface to COM, the suite of interfaces and APIs by which Component Object

Model software is implemented and used. Chapters 2 through 8 are in Part II.

Chapter 2 goes into more detail about COM features and mechanisms without getting into the details of function call

specifications and code. The chapter is intended for technical readers who want to know more than simply what

COM is and what problems it solves, and therefore delves deeper into how applications use COM and the benefits of

such use.

Chapters 3-6 contain programming-level information for readers who are interested in actually making use of COM

in an application. These chapters explain the fundamentals of objects in COM and the creation of object clients as

well as object servers. Chapter 3 details the basic object structures and mechanisms and provides the functional spec-

ifications of the core of COM. Chapter 4 covers the COM programming interfaces that all applications making use of

COM must follow. Chapter 5 then deals specifically with COM clients; Chapter 6 specifically with COM servers.

Chapter 7 contains more detailed information about how COM clients and servers communicate with objects. This

information is generally needed only by sophisticated programmers. Nevertheless, programmers may find this chap-

ter enlightening and can gain a clear understanding of all the underlying mechanisms that make COM truly powerful.

Chapter 8 contains information on how communications between COM clients and severs can be made secure.

Part III (Chapters 9-12) provides the functional specifications for the extended features of COM, including storage,

naming, and exchange of data. These added features are built on top of the core COM functionality described in the

previous chapters.

Part IV specifies standards relating to tools used to assist the authorship of COM software. It includes Chapter 13,

which specifies the COM extensions to the standard Interface Definition Language (IDL) of the Open Software

Foundation (OSF) Distributed Computing Environment (DCE). This will be of interest primarily to tools vendors

who support tools that work with this language. Chapter 14 covers Type Libraries which are the binary equivalent

to IDL.

Finally, Part V specifies information needed by programmers who will be implementing COM on other plat-

formsðthat is, the programmer who will be implementing COM on a systems level rather than an application level.

Within Part V, Chapter 15 specifies the protocol used by COM when performing distributed computing between

machines over a network. This chapter heavily references the OSF DCE RPC specification, noted in the Bibliog-

raphy as [CAE RPC].

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 6 DRAFT: October 24, 1995

 All Rights Reserved

This page left intentionally blank.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 7 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Part I: Component Object Model Introduction

Part I is an overview and introduction to the Component Object Model. The only chapter in Part I (Chapter 1), ex-

plains at a high level the motivations of COM and the problems it addresses. It describes what COM is and its fea-

tures, and describes the major benefits and advantages of COM.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 8 DRAFT: October 24, 1995

 All Rights Reserved

This page intentionally left blank.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 9 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

1. Introduction

1 Challenges Facing The Software Industry

Constant innovation in computing hardware and software have brought a multitude of powerful and sophisticated

applications to usersô desktops and across their networks. Yet with such sophistication have come commensurate

problems for application developers, software vendors, and users:

¶ Todayôs applications are large and complexðthey are time-consuming to develop, difficult and costly to

maintain, and risky to extend with additional functionality.

¶ Applications are monolithicðthey come prepackaged with a wide range of features but most features can-

not be removed, upgraded independently, or replaced with alternatives.

¶ Applications are not easily integratedðdata and functionality of one application are not readily available to

other applications, even if the applications are written in the same programming language and running on

the same machine.

¶ Operating systems have a related set of problems. They are not sufficiently modular, and it is difficult to

override, upgrade, or replace OS-provided services in a clean and flexible fashion.

¶ Programming models are inconsistent for no good reason. Even when applications have a facility for coop-

erating, their services are provided to other applications in a different fashion from the services provided by

the operating system or the network. Moreover, programming models vary widely depending on whether

the service is coming from a provider in the same address space as the client program (via dynamic linking),

from a separate process on the same machine, from the operating system, or from a provider running on a

separate machine (or set of cooperating machines) across the network.

In addition, a result of the trends of hardware down-sizing and increasing software complexity is the need for a new

style of distributed, client/server, modular and ñcomponentizedò computing. This style calls for:

¶ A generic set of facilities for finding and using service providers (whether provided by the operating system

or by applications, or a combination of both), for negotiating capabilities with service providers, and for ex-

tending and evolving service providers in a fashion that does not inadvertently break the consumers of ear-

lier versions of those services.

¶ Use of object-oriented concepts in system and application service architectures to better match the new

generation of object-oriented development tools, to manage increasing software complexity through in-

creased modularity, to re-use existing solutions, and to facilitate new designs of more self-sufficient soft-

ware components.

¶ Client/server computing to take advantage of, and communicate between, increasingly powerful desktop

devices, network servers, and legacy systems.

¶ Distributed computing to provide a single system image to users and applications and to permit use of ser-

vices in a networked environment regardless of location, machine architecture, or implementation environ-

ment.

As an illustration of the issues at hand, consider the problem of creating a system service API (Application Pro-

gramming Interface) that works with multiple providers of some service in a ñpolymorphicò fashion. That is, a client

of the service can transparently use any particular provider of the service without any special knowledge of which

specific provider ðor implementation ðis in use. In traditional systems, there is a central piece of

codeðconceptually, the service manager is a sort of ñobject manager,ò although traditional systems usually involve

function-call programming models with system-provided handles used as the means for ñobjectò selectionðthat

every application calls to access meta-operations such as selecting an object and connecting to it. But once applica-

tions have used those ñobject managerò operations and are connected to a service provider, the ñobject managerò

only gets in the way and forces unnecessary overhead upon all applications as shown in Figure 1-1.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 10 DRAFT: October 24, 1995

 All Rights Reserved

In addition to the overhead of the system-provided layer, another significant problem with traditional service models

is that it is impossible for the provider to express new, enhanced, or unique capabilities to potential consumers in a

standard fashion. A well-designed traditional service architecture may provide the notion of different levels of ser-

vice. (Microsoftôs Open Database Connectivity (ODBC) API is an example of such an API.) Applications can count

on the minimum level of service, and can determine at run-time if the provider supports higher levels of service in

certain pre-defined quanta, but the providers are restricted to providing the levels of services defined at the outset by

the API; they cannot readily provide a new capability and then evangelize consumers to access it cheaply and in a

fashion that fits within the standard model. To take the ODBC example, the vendor of a database provider intent on

doing more than the current ODBC standard permits must convince Microsoft to revise the ODBC standard in a way

that exposes that vendorôs extra capabilities. Thus, traditional service architectures cannot be readily extended or

supplemented in a decentralized fashion.

Traditional service architectures also tend to be limited in their ability to robustly evolve as services are revised and

versioned. The problem with versioning is one of representing capabilities (what a piece of code can do) and identity

(what a piece of code is) in an interrelated, fuzzy way. A later version of some piece of code, such as ñCode version

2ò indicates that it is like ñCode version 1ò but different in some way. The problem with traditional versioning in this

manner is that itôs difficult for code to indicate exactly how it differs from a previous version and worse yet, for cli-

ents of that code to react appropriately to new versionsðor to not react at all if they expect only the previous ver-

sion. The versioning problem can be reasonably managed in a traditional system when (i) there is only a single pro-

vider of a certain kind of service, (ii) the version number of the service is checked by the consumer when it binds to

the service, (iii) the service is extended only in an upward-compatible mannerði.e., features can only be added and

never removed (a significant restriction as software evolves over a long period of time)ðso that a version N provider

will work with consumers of versions 1 through N-1 as well, and (iv) references to a running instance of the service

are not freely passed around by consumers to other consumers, all of which may expect or require different versions.

But these kind of restrictions are obviously unacceptable in a multi-vendor, distributed, modular system with poly-

morphic service providers.

These problems of service management, extensibility, and versioning have fed the problems stated earlier. Applica-

tion complexity continues to increase as it becomes more and more difficult to extend functionality. Monolithic ap-

plications are popular because it is safer and easier to collect all interdependent services and the code that uses those

services into one package. Interoperability between applications suffers accordingly, where monolithic applications

are loathe to allow independent agents to access their functionality and thus build a dependence upon a certain be-

havior of the application. Because end users demand interoperability, however, application are compelled to attempt

interoperability, but this leads directly back to the problem of application complexity, completing a circle of prob-

lems that limit the progress of software development.

2 The Solution: Component Software

Object-oriented programming has long been advanced as a solution to the problems at hand. However, while ob-

ject-oriented programming is powerful, it has yet to reach its full potential because no standard framework exists

through which software objects created by different vendors can interact with one another within the same address

space, much less across address spaces, and across network and machine architecture boundaries. The major result of

Consumer

(application)

Service Provider

(application

or system)
Traditional

System

Service

Interface
Service Provider

(application

or system)

Figure 1-1: Traditional system service APIs require all applications to communicate

through a central manager with corresponding overhead.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 11 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

the object-oriented programming revolution has been the production of ñislands of objectsò that canôt talk to one

another across the sea of application boundaries in a meaningful way.

The solution is a system in which application developers create reusable software components. A component is a

reusable piece of software in binary form that can be plugged into other components from other vendors with rela-

tively little effort. For example, a component might be a spelling checker sold by one vendor that can be plugged into

several different word processing applications from multiple vendors. It might be a math engine optimized for com-

puting fractals. Or it might be a specialized transaction monitor that can control the interaction of a number of other

components (including service providers beyond traditional database servers). Software components must adhere to a

binary external standard, but their internal implementation is completely unconstrained. They can be built using

procedural languages as well as object-oriented languages and frameworks, although the latter provide many ad-

vantages in the component software world.

Software component objects are much like integrated circuit (IC) components, and component software is the inte-

grated circuit of tomorrow. The software industry today is very much where the hardware industry was 20 years ago.

At that time, vendors learned how to shrink transistors and put them into a package so that no one ever had to figure

out how to build a particular discrete functionðan NAND gate for exampleðever again. Such functions were made

into an integrated circuit, a neat package that designers could conveniently buy and design around. As the hardware

functions got more complex, the ICs were integrated to make a board of chips to provide more complex functionality

and increased capability. As integrated circuits got smaller yet provided more functionality, boards of chips became

just bigger chips. So hardware technology now uses chips to build even bigger chips.

The software industry is at a point now where software developers have been busy building the software equivalent

of discrete transistorsðsoftware routinesðfor a long time.

The Component Object Model enables software suppliers to package their functions into reusable software compo-

nents in a fashion similar to the integrated circuit. What COM and its objects do is bring software into the world

where an application developer no longer has to write a sorting algorithm, for example. A sorting algorithm can be

packaged as a binary object and shipped into a marketplace of component objects. The developer who need a sorting

algorithm just uses any sorting object of the required type without worrying about how the sort is implemented. The

developer of the sorting object can avoid the hassles and intellectual property concerns of source-code licensing, and

devote total energy to providing the best possible binary version of the sorting algorithm. Moreover, the developer

can take advantage of COMôs ability to provide easy extensibility and innovation beyond standard services as well as

robust support for versioning of components, so that a new component works perfectly with software clients expect-

ing to use a previous version.

As with hardware developers and the integrated circuit, applications developers now do not have to worry about how

to build that function; they can simply purchase that function. The situation is much the same as when you buy an

integrated circuit today: You donôt buy the sources to the IC and rebuild the IC yourself. COM allows you to simply

buy the software component, just as you would buy an integrated circuit. The component is compatible with anything

you ñplugò it into.

By enabling the development of component software, COM provides a much more productive way to design, build,

sell, use, and reuse software. Component software has significant implications for software vendors, users, and cor-

porations:

¶ Application developers are enabled to build and distribute applications more easily than ever before.

Component objects provide both scalability from single processes to enterprise networks and modularity for

code reuse. In addition, developers can attain higher productivity because they can learn one object system

for many platforms.

¶ Vendors are provided with a single model for interacting with other applications and the distributed com-

puting environment. While component software can readily be added to existing applications without fun-

damental rewriting, it also provides the opportunity to modularize applications and to incrementally replace

system capabilities where appropriate. The advent of component software will help create more diverse

market segments and niches for small, medium, and large vendors.

¶ End-users wil l see a much greater range of software choices, coupled with better productivity. Users will

have access to hundreds of objects across client and server platformsðobjects that were previously devel-

oped by independent software vendors (ISVs) and corporations. In addition, as users see the possibilities of

component software, demand is likely to increase for specialized components they can purchase at a local

software retail outlet and plug into applications.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 12 DRAFT: October 24, 1995

 All Rights Reserved

¶ Corporations benefit from lower costs for corporate computing, helping IS departments work more effi-

ciently, and enabling corporate computer users to be more productive. IS developers will spend less time

developing general purpose software components and more time developing ñglueò components to create

business-specific solutions. Existing applications do not need to be rewritten to take advantage of a compo-

nent architecture. Instead, corporate developers can create object-based ñwrappersò that encapsulate the

legacy application and make its operations and data available as an object to other software components in

the network.

3 The Component Software Solution: OLEôs COM

The Component Object Model provides a means to address problems of application complexity and evolution of

functionality over time. It is a widely available, powerful mechanism for customers to adopt and adapt to a new style

multi-vendor distributed computing, while minimizing new software investment.. COM is an open standard, fully

and completely publicly documented from the lowest levels of its protocols to the highest. As a robust, efficient and

workable component architecture it has been proven in the marketplace as the foundation of diverse and several

application areas including compound documents, programming widgets, 3D engineering graphics, stock market data

transfer, high performance transaction processing, and so on.

The Component Object Model is an object-based programming model designed to promote software interoperability;

that is, to allow two or more applications or ñcomponentsò to easily cooperate with one another, even if they were

written by different vendors at different times, in different programming languages, or if they are running on differ-

ent machines running different operating systems. To support its interoperability features, COM defines and imple-

ments mechanisms that allow applications to connect to each other as software objects. A software object is a col-

lection of related function (or intelligence) and the functionôs (or intelligenceôs) associated state.

In other words, COM, like a traditional sys-

tem service API, provides the operations

through which a client of some service can

connect to multiple providers of that service

in a polymorphic fashion. But once a connec-

tion is established, COM drops out of the

picture. COM serves to connect a client and

an object, but once that connection is estab-

lished, the client and object communicate

directly without having to suffer overhead of

being forced through a central piece of API

code as illustrated in Figure 1-2.

COM is not a prescribed way to structure an

application; rather, it is a set of technologies

for building robust groups of services in both

systems and applications such that the services and the clients of those services can evolve over time. In this way,

COM is a technology that makes the programming, use, and uncoordinated/independent evolution of binary objects

possible. COM is not a technology designed primarily for making programming necessarily easy; indeed, some of

the difficult requirements that COM accepts and meets necessarily involve some degree of complexity.1 However,

COM provides a ready base for extensions oriented towards increased ease-of-use, as well as a great basis for pow-

erful, easy development environments, language-specific improvements to provide better language integration, and

pre-packaged functionality within the context of application frameworks.

This is a fundamental strength of COM over other proposed object models: COM solves the ñdeployment problem,ò

the versioning/evolution problem where it is necessary that the functionality of objects can incrementally evolve or

change without the need to simultaneously and in lockstep evolve or change all existing the clients of the object.

Objects/services can easily continue to support the interfaces through which they communicated with older clients as

well as provide new and better interfaces through which they communicate with newer clients.

To solve the versioning problems as well providing connection services without undue overhead, the Component

Object Model builds a foundation that:

¶ Enables the creation and use of reusable components by making them ñcomponent objects.ò

1 ñEasyò is a relative term: without COM, some sorts of programming are simply not possible and thus the term ñeasyò is utterly empty.

Client

Application

COM:

Esablished

Connection

Server

Application

Object
Client talks

directly

to object

Figure 1-2: Once COM connects client and object, the client and

object communicate directly without added overhead.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 13 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

¶ Defines a binary standard for interoperability.

¶ Is a true system object model.

¶ Provides distributed capabilities.

The following sections describe each of these points in more detail.

.1 Reusable Component Objects

Object-oriented programming allows programmers to build flexible and powerful software objects that can easily be

reused by other programmers. Why is this? What is it about objects that are so flexible and powerful?

The definition of an object is a piece of software that contains the functions that represent what the object can do (its

intelligence) and associated state information for those functions (data). An object is, in other words, some data

structure and some functions to manipulate that structure.

An important principle of object-oriented programming is encapsulation, where the exact implementation of those

functions and the exact format and layout of the data is only of concern to the object itself. This information is hid-

den from the clients of an object. Those clients are interested only in an objectôs behavior and not the objectôs inter-

nals. For instance, consider an object that represents a stack: a user of the stack cares only that the object supports

ñpushò and ñpopò operations, not whether the stack is implemented with an array or a linked list. Put another way, a

client of an object is interested only in the ñcontractòðthe promised behaviorðthat the object supports, not the im-

plementation it uses to fulfill that contract.

COM goes as far as to formalize the notion of a contract between object and client. Such a contract is the basis for

interoperability, and for interoperability to work on a large scale requires a strong standard.

.2 Binary and Wire-Level Standards for Interoperability

The Component Object Model defines a completely standardized mechanism for creating objects and for clients and

objects to communicate. Unlike traditional object-oriented programming environments, these mechanisms are inde-

pendent of the applications that use object services and of the programming languages used to create the objects. The

mechanisms also support object invocations across the network. COM therefore defines a binary interoperability

standard rather than a language-based interoperability standard on any given operating system and hardware plat-

form. In the domain of network computing, COM defines a standard architecture-independent wire format and pro-

tocol for interaction between objects on heterogeneous platforms.

.1 Why Is Providing a Binary and Network Standard Important?

By providing a binary and network standard, COM enables interoperability among applications that different pro-

grammers from different companies write. For example, a word processor application from one vendor can connect

to a spreadsheet object from another vendor and import cell data from that spreadsheet into a table in the document.

The spreadsheet object in turn may have a ñhotò link to data provided by a data object residing on a mainframe. As

long as the objects support a predefined standard interface for data exchange, the word processor, spreadsheet, and

mainframe database donôt have to know anything about each otherôs implementation. The word processor need only

know how to connect to the spreadsheet; the spreadsheet need only know how to expose its services to anyone who

wishes to connect. The same goes for the network contract between the spreadsheet and the mainframe database. All

that either side of a connection needs to know are the standard mechanisms of the Component Object Model.

Without a binary and network standard for communication and a standard set of communication interfaces, pro-

grammers face the daunting task of writing a large number of procedures, each of which is specialized for communi-

cating with a different type of object or client, or perhaps recompiling their code depending on the other components

or network services with which they need to interact. With a binary and network standard, objects and their clients

need no special code and no recompilation for interoperability. But these standards must be efficient for use in both a

single address space and a distributed environment; if the mechanism used for object interaction is not extremely

efficient, especially in the case of local (same machine) servers and components within a single address space,

mass-market software developers pressured by size and performance requirements simply will not use it.

Finally, object communication must be programming language-independent since programmers cannot and should

not be forced to use a particular language to interact with the system and other applications. An illustrative problem

is that every C++ vendor says, ñWeôve got class libraries and you can use our class libraries.ò But the interfaces

published for that one vendorôs C++ object usually differs from the interfaces publishes for another vendorôs C++

object. To allow application developers to use the objectsô capabilities, each vendor has to ship the source code for

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 14 DRAFT: October 24, 1995

 All Rights Reserved

the class library for the objects so that application developers can rebuild that code for the vendorôs compiler theyôre

using. By providing a binary standard to which objects conform, vendors do not have to send source code to provide

compatibility, nor to users have to restrict the language they use to get access to the objectsô capabilities. COM ob-

jects are compatible by nature.

.2 COMôs Standards Enable Object Interoperability

With COM, applications interact with each other and with the system through collections of function callsðalso

known as methods or member functions or requestsðcalled interfaces. An ñinterfaceò in the COM sense2 is a

strongly typed contract between software components to provide a relatively small but useful set of semantically

related operations. An interface is an articulation of an expected behavior and expected responsibilities, and the se-

mantic relation of interfaces gives programmers and designers a concrete entity to use when referring to the contract.

Although not a strict requirement of the model, interfaces should be factored in such fashion that they can be re-used

in a variety of contexts. For example, a simple interface for generically reading and writing streams of data can be

re-used by many different types of objects and clients.

The use of such interfaces in COM provides four major benefits:

1. The ability for functionality in applications (clients or servers of objects) to evolve over time: This is

accomplished through a request called QueryInterface that all COM objects support (or else they are not

COM objects). QueryInterface allows an object to make more interfaces (that is, new groups of functions)

available to new clients while at the same time retaining complete binary compatibility with existing client

code. In other words, revising an object by adding new, even unrelated functionality will not require any

recompilation on the part of any existing clients. Because COM allows objects to have multiple interfaces,

an object can express any number of ñversionsò simultaneously, each of which may be in simultaneous use

by clients of different vintage. And when its clients pass around a reference to the ñobject,ò an occurrence

that in principle cannot be known and therefore ñguarded againstò by the object, they actually pass a refer-

ence to a particular interface on the object, thus extending the chain of backward compatibility. The use of

immutable interfaces and multiple interfaces per object solves the problem of versioning.

2. Very fast and simple object interaction for same-process objects: Once a client establishes a connection

to an object, calls to that objectôs services (interface functions) are simply indirect functions calls through

two memory pointers. As a result, the performance overhead of interacting with an in-process COM object

(an object that is in the same address space) as the calling code is negligibleðonly a handful of processor

instructions slower than a standard direct function call and no slower than a compile-time bound C++ sin-

gle-inheritance object invocation.3

3. ñLocation transparencyò: The binary standard allows COM to intercept a interface call to an object and

make instead a remote procedure call (RPC) to the ñrealò instance of the object that is running in another

process or on another machine. A key point is that the caller makes this call exactly as it would for an object

in the same process. Its binary and network standards enables COM to perform inter-process and

cross-network function calls transparently. While there is, of course, a great deal more overhead in making a

remote procedure call, no special code is necessary in the client to differentiate an in-process object from

out-of-process objects. All objects are available to clients in a uniform, transparent fashion.4

 This is all well and good. But in the real world, it is sometimes necessary for performance reasons that spe-

cial considerations be taken into account when designing systems for network operation that need not be

considered when only local operation is used. What is needed is not pure local / remote transparency, but

ñlocal / remote transparency, unless you need to care.ò COM provides this capability. An object imple-

2 The term ñinterfaceò is used in a very similar sense in the Component Object Request Broker Architecture (CORBA) design of the Object

Management Group. In both cases the idea of an ñinterfaceò is a signature of functions and, implicitly, capabilities, entirely abstracted from the
implementation. The major difference between COM and CORBA at this high level is that CORBA objects have one and only one interface

while COM objects can have many interfaces simultaneously. DCE RPC (from OSF) uses the term ñinterfaceò in a similar manner.
3 Indeed, in principle the intrinsic method dispatch overhead of COM is in fact less than the intrinsic overhead of C++ multiple inheritance

method invocations. In a multiple inheritance situation, C++ must on every method invocation adjust the this pointer to be as appropriate for
the actual method which is to be executed. In an COM object which supports multiple interfaces, which is directly analogous to the multiple

inheritance situation, one must of course also do a similar sort of adjustment, and this is done in the QueryInterface method. However, when
using a given interface on the object, one can invoke QueryInterface once and use the returned pointer many times. Thus, the cost of the

QueryInterface operation can be amortized over all the subsequent usage, resulting in less overall dispatch overhead. Be aware, however, that
this distinction is completely academic. In almost all real word situations, both dispatch mechanisms provide more than adequate performance.

4 There can be subtle differences in the flow-of-control between calling in-process and out-of-process objects. In particular, an out-of-process
object call may result in a call-back prior to the completion of the original call. COM provides standard mechanisms to deal with call-backs and

reentrancy; even on single-threaded operating systems. Without such standards, true interoperability between out-of-process objects (of which
cross-network objects is just a typical case) is impossible.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 15 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

mentor can if he wishes support custom marshaling which allows his objects to take special action when

they are used from across the network, different action if he would like than is used in the local case. The

key point is that this is done completely transparently to the client. Taken as a whole, this architecture al-

lows one to design client / object interfaces at their natural and easy semantic level without regard to net-

work performance issues, then at a later address network performance issues without disrupting the estab-

lished design.

4. Programming language independence: Because COM is a binary standard, objects can be implemented in

a number of different programming languages and used from clients that are written using completely dif-

ferent programming languages. Any programming language that can create structures of pointers and ex-

plicitly or implicitly call functions through pointersðlanguages such as C, C++, Pascal, Ada, Smalltalk, and

even BASIC programming environmentsðcan create and use COM objects immediately. Other languages

can easily be enhanced to support this requirement.

In sum, only with a binary standard can an object model provide the type of structure necessary for full interoperabil-

ity, evolution, and re-use between any application or component supplied by any vendor on a single machine archi-

tecture. Only with an architecture-independent network wire protocol standard can an object model provide full in-

teroperability, evolution, and re-use between any application or component supplied by any vendor in a network of

heterogeneous computers. With its binary and networking standards, COM opens the doors for a revolution in soft-

ware innovation without a revolution in networking, hardware, or programming and programming tools.

.3 A True System Object Model

To be a true system model, an object architecture must allow a distributed, evolving system to support millions of

objects without risk of erroneous connections of objects and other problems related to strong typing or definition.

COM is such an architecture. In addition to being an object-based service architecture, COM is a true system object

model because it:

¶ Uses ñglobally unique identifiersò to identify object classes and the interfaces those objects may support.

¶ Provides methods for code reusability without the problems of traditional language-style implementation inher-

itance.

¶ Has a single programming model for in-process, cross-process, and cross-network interaction of software com-

ponents.

¶ Encapsulates the life-cycle of objects via reference counting.

¶ Provides a flexible foundation for security at the object level.

The following sections elaborate on each of these aspects of COM.

.1 Globally Unique Identifiers

Distributed object systems have potentially millions of interfaces and software components that need to be uniquely

identified. Any system that uses human-readable names for finding and binding to modules, objects, classes, or re-

quests is at risk because the probability of a collision between human-readable names is nearly 100% in a complex

system. The result of name-based identification will inevitably be the accidental connection of two or more software

components that were not designed to interact with each other, and a resulting error or crashðeven though the com-

ponents and system had no bugs and worked as designed.

By contrast, COM uses globally unique identifiers (GUIDs)ð128-bit integers that are virtually guaranteed to be

unique in the world across space and timeðto identify every interface and every object class and type.5 These glob-

ally unique identifiers are the same as UUIDs (Universally Unique IDs) as defined by DCE. Human-readable names

are assigned only for convenience and are locally scoped. This helps insure that COM components do not acci-

dentally connect to an object or via an interface or method, even in networks with millions of objects.6

5 Although ñclassò and ñtypeò can often be used interchangeably, in COM a ñtypeò is the total signature of an object, which is the union of the
interfaces that the object supports. ñClassò is a particular implementation of a type, and can include certain unique implementation-specific at-

tributes such as product name, icon, etc. For example, the ñchartò type (identified by a GUID by whomever first defines that particular combi-
nation of interfaces) might be supported by Lotus 1-2-3 for Windows and Microsoft Excel for the Macintosh, each of which are separate clas-

ses. Normally, types are polymorphic; any consumer of the services provided by interfaces making up the type can use any class that imple-
ments the type.

6 As an illustration of how unique GUIDs are consider that one could generate 10 million GUIDs a second until the year 5770 AD and each one
would be unique.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 16 DRAFT: October 24, 1995

 All Rights Reserved

.2 Code Reusability and Implementation Inheritance

Implementation inheritanceðthe ability of one component to ñsubclassò or ñinheritò some of its functionality from

another component while ñover-ridingò other functionsðis a very useful technology for building applications. But

more and more experts are concluding that it creates serious problems in a loosely coupled, decentralized, evolving

object system. The problem is technically known as the lack of type-safety in the specialization interface and is

well-documented in the research literature.7

The general problem with traditional implementation inheritance is that the ñcontractò or interface between objects in

an implementation hierarchy is not clearly defined; indeed, it is implicit and ambiguous. When the parent or child

component changes its implementation, the behavior of related components may become undefined. This tight cou-

pling of implementations is not a problem when the implementation hierarchy is under the control of a defined group

of programmers who can, if necessary, make updates to all components simultaneously. But it is precisely this ability

to control and change a set of related components simultaneously that differentiates an application, even a complex

application, from a true distributed object system. So while traditional implementation inheritance can be a very

good thing for building applications and components, it is inappropriate in a system object model.

Today, COM provides two mechanisms for code reuse called containment/delegation and aggregation. In the first

and more common mechanism, one object (the ñouterò object) simply becomes the client of another, internally using

the second object (the ñinnerò object) as a provider of services that the outer object finds useful in its own imple-

mentation. For example, the outer object may implement only stub functions that merely pass through calls to the

inner object, only transforming object reference parameters from the inner object to itself in order to maintain full

encapsulation. This is really no different than an application calling functions in an operating system to achieve the

same endsðother objects simply extend the functionality of the system. Viewed externally, clients of the outer ob-

ject only ever see the outer objectðthe inner ñcontainedò object is completely hiddenðencapsulatedðfrom view.

And since the outer object is itself a client of the inner object, it always uses that inner object through a clearly de-

fined contracts: the inner objectôs interfaces. By implementing those interfaces, the inner object signs the contract

promising that it will not change its behavior unexpectedly.

With aggregation, the second and more rare reuse mechanism, COM objects take advantage of the fact that they can

support multiple interfaces. An aggregated object is essentially a composite object in which the outer object exposes

an interface from the inner object directly to clients as if it were part of the outer object. Again, clients of the outer

object are impervious to this fact, but internally, the outer object need not implement the exposed interface at all. The

outer object has determined that the implementation of the inner objectôs interface is exactly what it wants to provide

itself, and can reuse that implementation accordingly. But the outer object is still a client of the inner object and there

is still a clear contract between the inner object and any client. Aggregation is really nothing more than a special case

of containment/delegation to prevent the outer object from having to implement an interface that does nothing more

than delegate every function to the same interface in the inner object. Aggregation is really a performance conven-

ience more than the primary method of reuse in COM.

Both these reuse mechanisms allow objects to exploit existing implementation while avoiding the problems of tradi-

tional implementation inheritance. However, they lack a powerful, if dangerous, capability of traditional implemen-

tation inheritance: the ability of a child object to ñhookò calls that a parent object might make on itself and override

entirely or supplement partially the parentôs behavior. This feature of implementation inheritance is definitely useful,

but it is also the key area where imprecision of interface and implicit coupling of implementation (as opposed to

interface) creeps in to traditional implementation inheritance mechanisms. A future challenge for COM is to define a

set of conventions that components can use to provide this ñhookingò feature of implementation inheritance while

maintaining the strictness of contract between objects and the full encapsulation required by a true system object

model, even those in ñparent/childò relationships.8

7 See, for example, Richard Helm (Senior Researcher, IBM Thomas J. Watson Research Center), Ensuring Semantic Integrity of Reusable

Objects (Panel), OOPSLA ô92 Conference Proceedings, p.300; John Lamping (Xerox PARC), Typing the Specialization Interface, OOPSLA

ô93 Conference Proceedings, p.201.
8 Readers interested in this issue should examine the ñconnectable objectò architecture described in Chapter 11. Connectable objects enable an

event model that provides a standard, powerful convention for a COM object to signal to any interested client that is about to do something, that
is doing something, and that it is finished doing something. The model also allows clients to cancel the event outright or to cancel it in favor of

an ñoverridingò event supplied by the client. This event model coupled with a few additional conventions could provide COM with all the tra-
ditional features of implementation inheritance and more without the traditional risks. For an interesting discussion of the problems of tradi-

tional implementation inheritance as well as a description of how an inheritance system might be provide robust type-safety, see Hauck, Inher-
itance Modeled with Explicit Bindings: An Approach to Typed Inheritance, OOPSLA ô93 Conference Proceedings, p.231.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 17 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

.3 Single Programming Model

A problem related to implementation inheritance is the issue of a single programming model for in-process objects

and out-of-process/cross-network objects. In the former case, class library technology (or application frameworks)

permits only the use of features or objects that are in a single address. Such technology is far from permitting use of

code outside the process space let alone code running on another machine altogether. In other words, a programmer

canôt subclass a remote object to reuse its implementation. Similarly, features like public data items in classes that

can be freely manipulated by other objects within a single address space donôt work across process or network

boundaries. In contrast, COM has a single interface-based binding model and has been carefully designed to mini-

mize differences between the in-process and out-of-process programming model. Any client can work with any ob-

ject anywhere else on the machine or network, and because the object reusability mechanisms of containment and

aggregation maintain a client/server relationship between objects, reusability is also possible across process and

network boundaries.

.4 Life-cycle Encapsulation

In traditional object systems, the life-cycle of objectsðthe issues surrounding the creation and deletion of ob-

jectsðis handled implicitly by the language (or the language runtime) or explicitly by application programmers. In

other words, an object-based application, there is always someone (a programmer or team of programmers) or some-

thing (for example, the startup and shutdown code of a language runtime) that has complete knowledge when objects

must be created and when they should be deleted.

But in an evolving, decentralized system made up of objects, it is no longer true that someone or something always

ñknowsò how to deal with object life-cycle. Object creation is still relatively easy; assuming the client has the right

security privileges, an object is created whenever a client requests that it be created. But object deletion is another

matter entirely. How is it possible to ñknowò a priori when an object is no longer needed and should be deleted?

Even when the original client is done with the object, it canôt simply shut the object down since it is likely to have

passed a reference to the object to some other client in the system, and how can it know if/when that client is done

with the object?ðor if that second client has passed a reference to a third client of the object, and so on.

At first, it may seem that there are other ways of dealing with this problem. In the case of cross-process and

cross-network object usage, it might be possible to rely on the underlying communication channel to inform the

system when all connections to an object have disappeared. The object can then be safely deleted. There are two

drawbacks to this approach, however, one of which is fatal. The first and less significant drawback is that it simply

pushes the problem out to the next level of software. The object system will need to rely on a connection-oriented

communications model that is capable of tracking object connections and taking action when they disappear. That

might, however, be an acceptable trade-off.

But the second drawback is flatly unacceptable: this approach requires a major difference between the

cross-process/cross-network programming model, where the communication system can provide the hook necessary

for life-cycle management, and the single-process programming model where objects are directly connected together

without any intervening communications channel. In the latter case, object life-cycle issues must be handled in some

other fashion. This lack of location transparency would mean a difference in the programming model for sin-

gle-process and cross-process objects. It would also force clients to make a once-for-all compile-time decision about

whether objects were going to run in-process or out-of-process instead of allowing that decision to be made by users

of the binary component on a flexible, ad hoc basis. Finally, it would eliminate the powerful possibility of composite

objects or aggregates made up of both in-process and out-of-process objects.

Could the issue simply be ignored? In other words, could we simply ignore garbage collection (deletion of unused

objects) and allow the operating system to clean up unneeded resources when the process was eventually torn down?

That non-ñsolutionò might be tempting in a system with just a few objects, or in a system (like a laptop computer)

that comes up and down frequently. It is totally unacceptable, however, in the case of an environment where a single

process might be made up of potentially thousands of objects or in a large server machine that must never stop. In

either case, lack of life-cycle management is essentially an embrace of an inherently unstable system due to memory

leaks from objects that never die.

There is only one solution to this set of problems, the solution embraced by COM: clients must tell an object when

they are using it and when they are done, and objects must delete themselves when they are no longer needed. This

approach, based on reference counting by all objects, is summarized by the phrase ñlife-cycle encapsulationò since

objects are truly encapsulated and self-reliant if and only if they are responsible, with the appropriate help of their

clients acting singly and not collectively, for deleting themselves.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 18 DRAFT: October 24, 1995

 All Rights Reserved

Reference counting is admittedly complex for the new COM programmer; arguably, it is the most difficult aspect of

the COM programming model to understand and to get right when building complex peer-to-peer COM applications.

When viewed in light of the non-alternatives, however, its inevitability for a true system object model with full loca-

tion transparency is apparent. Moreover, reference counting is precisely the kind of mechanical programming task

that can be automated to a large degree or even entirely by well-designed programming tools and application frame-

works. Tools and frameworks focused on building COM components exist today and will proliferate increasingly

over the next few years. Moreover, the COM model itself may evolve to provide support for optionally delegating

life-cycle management to the system. Perhaps most importantly, reference counting in particular and native COM

programming in general involves the kind of mind-shift for programmersðas in GUI event-driven programming just

a few short years agoðthat seems difficult at first, but becomes increasingly easy, then second-nature, then almost

trivial as experience grows.

.5 Security

For a distributed object system to be useful in the real world it must provide a means for secure access to objects and

the data they encapsulate. The issues surrounding system object models are complex for corporate customers and

ISVs making planning decisions in this area, but COM meets the challenges, and is a solid foundation for an enter-

prise-wide computing environment.

COM provides security along several crucial dimensions. First, COM uses standard operating system permissions to

determine whether a client (running in a particular userôs security context) has the right to start the code associated

with a particular class of object. Second, with respect to persistent objects (class code along with data stored in a

persistent store such as file system or database), COM uses operating system or application permissions to determine

if a particular client can load the object at all, and if so whether they have read-only or read-write access, etc. Finally,

because its security architecture is based the design of the DCE RPC security architecture, an industry-standard

communications mechanism that includes fully authenticated sessions, COM provides cross-process and

cross-network object servers with standard security information about the client or clients that are using it so that a

server can use security in more sophisticated fashion than that of simple OS permissions on code execution and

read/write access to persistent data.

.4 Distributed Capabilities

COM supports distributed objects; that is, it allows application developers to split a single application into a number

of different component objects, each of which can run on a different computer. Since COM provides network trans-

parency, these applications do not appear to be located on different machines. The entire network appears to be one

large computer with enormous processing power and capacity.

Many single-process object models and programming languages exist today and a few distributed object systems are

available. However, none provides an identical, transparent programming model for small, in-process objects, me-

dium out-of-process objects on the same machine, and potentially huge objects running on another machine on the

network. The Component Object Model provides just such a transparent model, where a client uses an object in the

same process in precisely the same manner as it would use one on a machine thousands of miles away. COM explic-

itly bars certain kinds of ñfeaturesòðsuch as direct access to object data, properties, or variablesðthat might be

convenient in the case of in-process objects but would make it impossible for an out-of-process object to provide the

same set of services. This is called location transparency.

4 Objects and Interfaces

What is an object? An object is an instantiation of some class. At a generic level, a ñclassò is the definition of a set of

related data and capabilities grouped together for some distinguishable common purpose. The purpose is generally to

provide some service to ñthingsò outside the object, namely clients that want to make use of those services.

A object that conforms to COM is a special manifestation of this definition of object. A COM object appears in

memory much like a C++ object. Unlike C++ objects, however, a client never has direct access to the COM object in

its entirety. Instead, clients always access the object through clearly defined contracts: the interfaces that the object

supports, and only those interfaces.

What exactly is an interface? As mentioned earlier, an interface is a strongly-typed group of semantically-related

functions, also called ñinterface member functions.ò The name of an interface is always prefixed with an ñIò by con-

vention, as in IUnknown. (The real identity of an interface is given by its GUID; names are a programming conven-

ience, and the COM system itself uses the GUIDs exclusively when operating on interfaces.) In addition, while the

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 19 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

interface has a specific name (or type) and names of member functions, it defines only how one would use that inter-

face and what behavior is expected from an object through that interface. Interfaces do not define any implementa-

tion. For example, a hypothetical interface called IStack that had member functions of Push and Pop would only de-

fine the parameters and return types for those functions and what they are expected to do from a client perspective;

the object is free to implement the interface as it sees fit, using an array, linked list, or whatever other programming

methods it desires.

When an object ñimplements an interfaceò that object implements each member function of the interface and pro-

vides pointers to those functions to COM. COM then makes those functions available to any client who asks. This

terminology is used in this document to refer to the object as the important element in the discussion. An equivalent

term is an ñinterface on an objectò which means the object implements the interface but the main subject of discus-

sion is the interface instead of the object.

.1 Attributes of Interfaces

Given that an interface is a contractual way for an object to expose its services, there are four very important points

to understand:

An interface is not a class: An interface is not a class in the normal definition of ñclass.ò A class can be instantiated

to form an object. An interface cannot be instantiated by itself because it carries no implementation. An object must

implement that interface and that object must be instantiated for there to be an interface. Furthermore, different ob-

ject classes may implement an interface differently yet be used interchangeably in binary form, so long as the be-

havior conforms to the interface definition (such as two objects that implement IStack where one uses an array and

the other a linked list).

An interface is not an object: An interface is just a related group of functions and is the binary standard through

which clients and objects communicate. The object can be implemented in any language with any internal state rep-

resentation, so long as it can provide pointers to interface member functions.

Interfaces are strongly typed: Every interface has its own interface identifier (a GUID) thereby eliminating any

chance of collision that would occur with human-readable names. Programmers must consciously assign an identifier

to each interface and must consciously support that interface and/or the interfaces defined by others: confusion and

conflict among interfaces cannot happen by accident, leading to much improved robustness.

Interfaces are immutable: Interfaces are never versioned, thus avoiding versioning problems. A new version of an

interface, created by adding or removing functions or changing semantics, is an entirely new interface and is as-

signed a new unique identifier. Therefore a new interface does not conflict with an old interface even if all that

changed is the semantics. Objects can, of course, support multiple interfaces simultaneous; and they can have a sin-

gle internal implementation of the common capabilities exposed through two or more similar interfaces, such as

ñversionsò (progressive revisions) of an interface. This approach of immutable interfaces and multiple interfaces per

object avoids versioning problems.

Two additional points help to further reinforce the second point about the relationship of an object and its interfaces:

Clients only interact with pointers to interfaces: When a client has access to an object, it has nothing more than a

pointer through which it can access the functions in the interface, called simply an interface pointer. The pointer is

opaque, meaning that it hides all aspects of internal implementation. You cannot see any details about the object such

as its state information, as opposed to C++ object pointers through which a client may directly access the objectôs

data. In COM, the client can only call functions of the interface to which it has a pointer. But instead of being a re-

striction, this is what allows COM to provide the efficient binary standard that enables location transparency.

Objects can implement multiple interfaces: A object class canðand typically doesðimplement more than one

interface. That is, the class has more than one set of services to provide from each object. For example, a class might

support the ability to exchange data with clients as well as the ability to save its persistent state information (the data

it would need to reload to return to its current state) into a file at the clientôs request. Each of these abilities is ex-

pressed through a different interface, so the object must implement two interfaces.

Note that just because a class supports one interface, there is no general requirement that it supports any other. Inter-

faces are meant to be small contracts that are independent of one another. There are no contractual units smaller than

interfaces; if you write a class that implements an interface, your class must implement all the functions defined by

that interface (the implementation doesnôt always have to do anything). Also note that an object may be attempting to

conform to a higher specification than COM, such as a compound document standard like Microsoftôs OLE Docu-

ments architecture. In such cases, the objects in question must implement specific groups of interfaces to conform to

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 20 DRAFT: October 24, 1995

 All Rights Reserved

the OLE Documents specification for compound documents. It is then true that all compound document objects will

always implement the same basic set of interfaces, but those interfaces themselves do not depend on the presence of

the others. It is instead the clients of those objects that depend on the presence of all the interfaces.

The encapsulation of functionality into objects accessed through interfaces makes COM an open, extensible system.

It is open in the sense that anyone can provide an implementation of a defined interface and anyone can develop an

application that uses such interfaces, such as a compound document application. It is extensible in the sense that new

or extended interfaces can be defined without changing existing applications and those applications that understand

the new interfaces can exploit them while continuing to interoperate with older applications through the old interfac-

es.

.2 Object Pictures

It is convenient to adopt a standard pictorial representation for objects and their interfaces. The adopted convention is

to draw each interface on an object as a ñplug-in jack.ò These interfaces are generally drawn out the left or right side

of a box representing the object as a whole as illustrated in Figure 1-3. If desired, the names of the interfaces are

positioned next to the interface jack itself.

Object

A

B

C

Interfaces

Figure 1-3: A typical picture of an object that supports three interfaces A, B, and C.

The side from which interfaces extend is usually determined by the position of a client in the same picture, if appli-

cable. If there is no client in the picture then the convention is for interfaces to extend to the left as done in Figure

1-3. With a client in the picture, the interfaces extend towards the client, and the client is understood to have a point-

er to one or more of the interfaces on that object as illustrated in Figure 1-4.

Client

Application
Object

Interface

Pointer

Figure 1-4: Interfaces extend towards the clients connected to them.

In some circumstances a client may itself implement a small object to provide another object with functions to call

on various events or to expose services itself. In such cases the client is also an object implementor and the object is

also a client. Illustrations for such are similar to that in Figure 1-5.

Object

Application
Object

Application

Figure 1-5: Two applications may connect to each otherôs objects, in which

case they extend their interfaces towards each other.

Some objects may be acting as an intermediate between other clients in which case it is reasonable to draw the object

with interfaces out both sides with clients on both sides. This is, however, a less frequent case than illustrating an

objects connected to one client.

There is one interface that demands a little special attention: IUnknown. This is the base interface of all other interfac-

es in COM that all objects must support. Usually by implementing any interface at all an object also implements a set

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 21 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

of IUnknown functions that are contained within that implemented interface. In some cases, however, an object will

implement IUnknown by itself, in which case that interface is extended from the top of the object as shown in Figure

1-6.

Object

IUnknown

Other

Interfaces

Figure 1-6: The IUnknown interface extends from the

top of objects by convention.

In order to use an interface on a object, a client needs to know what it would want to do with that interfaceðthatôs

what makes it a client of an interface rather than just a client of the object. In the ñplug-in jackò concept, a client has

to have the right kind of plug to fit into the interface jack in order to do anything with the object through the inter-

face. This is like having a stereo system which has a number of different jacks for inputs and outputs, such as a ıò

stereo jack for headphones, a coax input for an external CD player, and standard RCA connectors for speaker output.

Only headphones, CD players, and speakers that have the matching plugs are able to plug into the stereo object and

make use of its services. Objects and interfaces in COM work the same way.

.3 Objects with Multiple Interfaces and QueryInterface

In COM, an object can support multiple interfaces, that is, provide pointers to more than one grouping of functions.

Multiple interfaces is a fundamental innovation of COM as the ability for such avoids versioning problems (interfac-

es are immutable as described earlier) and any strong association between an interface and an object class. Multiple

interfaces is a great improvement over systems in which each object only has one massive interface, and that inter-

face is a collection of everything the object does. Therefore the identity of the object is strongly tied to the exact

interface, which introduces the versioning problems once again. Multiple interfaces is the cleanest way around the

issue altogether.

The existence of multiple interfaces does, however, bring up a very important question. When a client initially gains

access to an object, by whatever means, that client is given one and only one interface pointer in return. How, then,

does a client access the other interfaces on that same object?

The answer is a member function called QueryInterface that is present in all COM interfaces and can be called on any

interface polymorphically. QueryInterface is the basis for a process called interface negotiation whereby the client asks

the object what services it is capable of providing. The question is asked by calling QueryInterface and passing to that

function the unique identifier of the interface representing the services of interest.

Hereôs how it works: when a client initially gains access to an object, that client will receive at minimum an IUnknown

interface pointer (the most fundamental interface) through which it can only control the lifetime of the objectðtell

the object when it is done using the objectðand invoke QueryInterface. The client is programmed to ask each object it

manages to perform some operations, but the IUnknown interface has no functions for those operations. Instead, those

operations are expressed through other interfaces. The client is thus programmed to negotiate with objects for those

interfaces. Specifically, the client will ask each objectðby calling QueryInterfaceðfor an interface through which the

client may invoke the desired operations.

Now since the object implements QueryInterface, it has the ability to accept or reject the request. If the object accepts

the clientôs request, QueryInterface returns a new pointer to the requested interface to the client. Through that interface

pointer the client thus has access to the functions in that interface. If, on the other hand, the object rejects the clientôs

request, QueryInterface returns a null pointerðan errorðand the client has no pointer through which to call the de-

sired functions. An illustration of both success and error cases is shown in Figure 1-7 where the client initially has a

pointer to interface A and asks for interfaces B and C. While the object supports interface B, it does not support in-

terface C.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 22 DRAFT: October 24, 1995

 All Rights Reserved

Object

A

B

Client

Pointer to A

obtained on

object creation

null

Pointer to B

obtained from

Aôs QueryInterface
Pointer to C

not available

from A or Bôs

QueryInterface
Figure 1-7: Interface negotiation means that a client must ask an object for an interface

pointer that is the only way a client can invoke functions of that interface.

A key point is that when an object rejects a call to QueryInterface, it is impossible for the client to ask the object to

perform the operations expressed through the requested interface. A client must have an interface pointer to invoke

functions in that interface, period. If the object refuses to provide one, a client must be prepared to do without, simp-

ly failing whatever it had intended to do with that object. Had the object supported that interface, the client might

have done something useful with it. Compare this with other object-oriented systems where you cannot know wheth-

er or not a function will work until you call that function, and even then, handling of failure is uncertain.

QueryInterface provides a reliable and consistent way to know before attempting to call a function.

.1 Robustly Evolving Functionality Over Time

Recall that an important feature of COM is the ability for functionality to evolve over time. This is not just important

for COM, but important for all applications. QueryInterface is the cornerstone of that feature as it allows a client to ask

an object ñdo you support functionality X?ò It allows the client to implement code that will use this functionality if

and only if an object supports it. In this manner, the client easily maintains compatibility with objects written before

and after the ñXò functionality was available, and does so in a robust manner. An old object can reliably answer the

question ñdo you support Xò with a ñnoò whereas a new object can reliably answer ñyes.ò Because the question is

asked by calling QueryInterface and therefore on a contract-by-contract basis instead of an individual func-

tion-by-function basis, COM is very efficient in this operation.

To illustrate the QueryInterface cornerstone, imagine a client that wishes to display the contents of a number of text

files, and it knows that for each file format (ASCII, RTF, Unicode, etc.) there is some object class associated with

that format. Besides a basic interface like IUnknown, which weôll call interface A, there are two others that the client

wishes to use to achieve its ends: interface B allows a client to tell an object to load some information from a file (or

to save it), and interface C allows a client to request a graphical rendering of whatever data the object loaded from a

file and maintains internally.

With these interfaces, the client is then programmed to process each file as follows:

1. Find the object class associated with a the file format.

2. Instantiate an object of that class obtaining a pointer to a basic interface A in return.

3. Check if the object supports loading data from a file by calling interface Aôs QueryInterface function request-

ing a pointer to interface B. If successful, ask the object to load the file through interface B.

4. Check if the object supports graphical rendering of its data by calling interface A or Bôs Querynterface func-

tion (doesnôt matter which interface, because queries are uniform on the object) requesting a pointer to in-

terface C. If successful, ask the object for a graphic of the file contents that the client then displays on the

screen.

If an object class exists for every file format in the clientôs file list, and all those objects implement interfaces A, B,

and C, then the client will be able to display all the contents of all the files. But in an imperfect world, letôs say that

the object class for the ASCII text formats does not support interface C, that is, the object can load data from a file

and save it to another file if necessary, but canôt supply graphics. When the client code, written as described above,

encounters this object, the QueryInterface for interface C fails, and the client cannot display the file contents. Oh

well...

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 23 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Now the programmers of the object class for ASCII realizes that they are losing market share because they donôt

support graphics, and so they update the object class such that it now supports interface C. This new object is in-

stalled on the machine alone with the client application, but nothing else changes in the entire system. The client

code remains exactly the same. What now happens the next time someone runs the client?

The answer is that the client immediately begins to use interface C on the updated object. Where before the object

failed QueryInterface when asked for interface C, it now succeeds. Because it succeeds, the client can now display the

contents of the file that it previously could not.

Here is the raw power of QueryInterface: a client can be written to take advantage of as much functionality as it would

ideally like to use on every object it manages. When the client encounters an object that lacks the ideal support, the

client can use as much functionality as is available on that given object. When the object it later updated to support

new interfaces, the same exact code in the client, without any recompilation, redeployment, or changes whatsoever,

automatically begins to take advantage of those additional interfaces. This is true component software. This is true

evolution of components independently of one another and retaining full compatibility.

Note that this process also works in the other direction. Imagine that since the client application above was shipped,

all the objects for rendering text into graphics were each upgraded to support a new interface D through which a

client might ask the object to spell-check the text. Each object is upgraded independently of the client, but since the

client never queries for interface D, the objects all continue to work perfectly with just interfaces B and C. In this

case the objects support more functionality than the client, but still retain full compatibility requiring absolutely no

changes to the client. The client, at a later date, might then implement code to use interface D as well as code for yet

a newer interface E (that supports, say, language translation). That client begins to immediately use interface D in all

existing objects that support it, without requiring any changes to those objects whatsoever.

This process continues, back and forth, ad infinitum, and applies not only to new interfaces with new functionality

but also to improvements of existing interfaces. Improved interface are, for all practical purposes, a brand-new inter-

face because any change to any interface requires a new interface identifier. A new identifier isolates an improved

interface from its predecessor as much as it isolates unrelated interfaces from each other. There is no concept of

ñversionò because the interfaces are totally different in identity.

So up to this point there has been this problem of versioning, presented at the beginning of this chapter, that made

independent evolution of clients and objects practically impossible. But now, for all time, QueryInterface solves that

problem and removes the barriers to rapid software innovation without the growing pains.

5 Clients, Servers, and Object Implementors

The interaction between objects and the users of those objects in COM is based on a client/server model. This chap-

ter has already been using the term óclientô to refer to some piece of code that is using the services of an object. Be-

cause an object supplies services, the implementor of that object is usually called the ñserver,ò the one who serves

those capabilities. A client/server architecture in any computing environment leads to greater robustness: if a server

process crashes or is otherwise disconnected from a client, the client can handle that problem gracefully and even

restart the server if necessary. As robustness is a primary goal in COM, then a client/server model naturally fits.

However, there is more to COM than just clients and servers. There are also object implementors, or some program

structure that implements an object of some kind with one or more interfaces on that object. Sometimes a client

wishes to provide a mechanism for an object to call back to the client when specific events occur. In such cases,

COM specifies that the client itself implements an object and hands that objectôs first interface pointer to the other

object outside the client. In that sense, both sides are clients, both sides are servers in some way. Since this can lead

to confusion, the term ñserverò is applied in a much more specific fashion leading to the following definitions that

apply in all of COM:

Object A unit of functionality that implements one or more interfaces to expose that functionality. For conven-

ience, the word is used both to refer to an object class as well as an individual instantiation of a class.

Note that an object class does not need a class identifier in the COM sense such that other applications

can instantiate objects of that classðthe class used to implement the object internally has no bearing on

the externally visible COM class identifier.

Object Implementor Any piece of code, such as an application, that has implemented an object with any inter-

faces for any reason. The object is simply a means to expose functions outside the particular application

such that outside agents can call those functions. Use of ñobjectò by itself implies an object found in

some ñobject implementorò unless stated otherwise.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 24 DRAFT: October 24, 1995

 All Rights Reserved

Client There are two definitions of this word. The general definition is any piece of code that is using the ser-

vices of some object, wherever that object might be implemented. A client of this sort is also called an

ñobject user.ò The second definition is the active agent (an application) that drives the flow of operation

between itself an other objects and uses specific COM ñimplementation locatorò services to instantiate

or create objects through servers of various object classes.

Server A piece of code that structures an object class in a specific fashion and assigns that class a COM class

identifier. This enables a client to pass the class identifier to COM and ask for an object of that class.

COM is able to load and run the server code, ask the sever to create an object of the class, and connect

that new object to the client. A server is specifically the necessary structure around an object that serves

the object to the rest of the system and associates the class identifier: a server is not the object itself.

The word ñserverò is used in discussions to emphasize the serving agent more than the object. The

phrase ñserver objectò is used specifically to identify an object that is implemented in a server when the

context is appropriate.

Putting all of these pieces together, imagine a client application that initially uses COM services to create an object

of a particular class. COM will run the server associated with that class and have it create an object, returning an

interface pointer to the client. With that interface pointer the client can query for any other interface on the object. If

a client wants to be notified of events that happen in the object in the server, such as a data change, the client itself

will implement an ñevent sinkò object and pass the interface pointer to that sink to the serverôs object through an

interface function call. The server holds onto that interface pointer and thus itself becomes a client of the sink object.

When the server object detects an appropriate event, it calls the sink objectôs interface function for that even. The

overall configuration created in this scenario is much like that shown earlier in Figure 1-5. There are two primary

modules of code (the original client and the server) who both implement objects and who both act in some aspects as

clients to establish the configuration.

When both sides in a configuration implement objects then the definition of ñclientò is usually the second one mean-

ing the active agent who drives the flow of operation between all objects, even when there is more than one piece of

code that is acting like a client of the first definition. This specification endeavors to provide enough context to make

it clear what code is responsible for what services and operations.

.1 Server Flavors: In-Process and Out-Of-Process

As defined in the last section, a ñserverò in general is some piece of code that structures some object in such a way

that COM ñimplementor locatorò services can run that code and have it create objects. The section below entitled

ñThe COM Libraryò expands on the specific responsibilities of COM in this sense.

Any specific server can be implemented in one of a number of flavors depending on the structure of the code module

and its relationship to the client process that will be using it. A server is either ñin-processò which means itôs code

executes in the same process space as the client, or ñout-of-processò which means it runs in another process on the

same machine or in another process on a remote machine. These three types of servers are called ñin-process,ò ñlo-

cal,ò and ñremoteò as defined below:

In-Process Server A server that can be loaded into the clientôs process space and serves ñin-process objects.ò

Under Microsoft Windows and Microsoft Windows NT, these are implemented as ñdynamic link li-

brariesò or DLLs. This specification uses DLL as a generic term to describe any piece of code that can

be loaded in this fashion which will, of course, differ between operating systems.

Local Server A server that runs in a separate process on the same machine as the client and serves ñlocal

objects.ò This type of server is another complete application of its own thus defining the separate pro-

cess. This specification uses the terms ñEXEò or ñexecutableò to describe an application that runs in its

own process as opposed to a DLL which must be loaded into an existing process.

Remote Server A server that runs on a separate machine and therefore always runs in another process as well

to serve ñremote objects.ò Remote servers may be implemented in either DLLs or EXEs; if a remote

server is implemented in a DLL, a surrogate process will be created for it on the remote machine.

Note that the same words ñin-process,ò ñlocal,ò and ñremoteò are used in this specification as a qualifier for the word

ñobjectò where emphasis is on the object more than the server.

Object implementors choose the type of server based on the requirements of implementation and deployment. COM

is designed to handle all situations from those that require the deployment of many small, lightweight in-process

objects (like controls, but conceivably even smaller) up to those that require deployment of a huge central corporate

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 25 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

database server. Furthermore, COM does so in a transparent fashion, with what is called location transparency, the

topic of the next section.

.2 Location Transparency

COM is designed to allow clients to transparently communicate with objects regardless of where those objects are

running, be it the same process, the same machine, or a different machine. What this means is that there is a single

programming model for all types of objects for not only clients of those objects but also for the servers of those ob-

jects.

From a clientôs point of view, all objects are access through interface pointers. A pointer must be in-process, and in

fact, any call to an interface function always reaches some piece of in-process code first. If the object is in-process,

the call reaches it directly, with no intervening system-infrastructure code. If the object is out-of-process, then the

call first reaches what is called a ñproxyò object provided by COM itself which generates the appropriate remote

procedure call to the other process or the other machine.

From a serverôs point of view, all calls to an objectôs interface functions are made through a pointer to that interface.

Again, a pointer only has context in a single process, and so the caller must always be some piece of in-process code.

If the object is in-process, the caller is the client itself. Otherwise, the caller is a ñstubò object provided by COM that

picks up the remote procedure call from the ñproxyò in the client process and turns it into an interface call to the

server object.

As far as both clients and servers know, they always communicate directly with some other in-process code as illus-

trated in Figure 1-8.

The bottom line is that dealing with in-process or remote objects is transparent and identical to dealing with

in-process objects. This location transparency has a number of key benefits:

¶ A common solution to problems that are independent of the distance between client and server: For

example, connection, function invocation, interface negotiation, feature evolution, and so forth.

¶ Programmers leverage their learning: New services are simply exposed through new interfaces, and once

programmers learn how to deal with interfaces, they already know how to deal with new services that will

be created in the future. This is a great improvement over environments where each service is exposed in a

completely different fashion.

¶ Systems implementation is centralized: The implementors of COM can focus on making the central pro-

cess of providing this transparency as efficient and powerful as possible such that every piece of code that

uses COM benefits immensely.

¶ Interface designers focus on design: In designing a suite of interfaces, the designers can spend their time

in the essence of the designðthe contracts between the partiesðwithout having to think about the underly-

ing communication mechanisms for any interoperability scenario. COM provides those mechanisms for free

and transparently.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 26 DRAFT: October 24, 1995

 All Rights Reserved

In-Process

Object

Client

Application

Local

Object

Proxy

Remote

Object

Proxy

In-Process Server

COM

Client Process

RPC

RPC

Local

Object

Local Server

Stub

COM

Local Server Process

Remote

Object

Remote Server

Stub

COM

Remote Server Process

Remote Machine

Figure 1-8: Clients always call in-process code; objects are always called by in-process

code. COM provides the underlying transparent RPC.

The clear separation of interface from implementation provided by location transparency for some situations gets in

the way when performance is of critical concern. When designing an interface while focusing on making it natural

and functional from the clientôs point of view, one is sometimes lead to design decisions that are in tension with

allowing for efficient implementation of that interface across a network. What is needed is not pure location trans-

parency, but ñlocation transparency, unless you need to care.ò COM provides this capability. An object implementor

can if he wishes support custom marshaling which allows his objects to take special action when they are used from

across the network, different action if he would like than is used in the local case. The key point is that this is done

completely transparently to the client. Taken as a whole, this architecture allows one to design client / object inter-

faces at their natural and easy semantic level without regard to network performance issues, then at a later address

network performance issues without disrupting the established design.9

Also note again that COM is not a specification for how applications are structured: it is a specification for how

applications interoperate. For this reason, COM is not concerned with the internal structure of an applicationðthat is

the job of programming languages and development environments. Conversely, programming environments have no

set standards for working with objects outside of the immediate application. C++, for example, works extremely well

to work with objects inside an application, but has no support for working with objects outside the application. Gen-

erally all other programming languages are the same in this regard. Therefore COM, through language-independent

interfaces, picks up where programming languages leave off to provide the network-wide interoperability.

6 The COM Library

It should be clear by this time that COM itself involves some systems-level code, that is, some implementation of its

own. However, at the core the Component Object Model by itself is a specification (hence ñModelò) for how objects

and their clients interact through the binary standard of interfaces. As a specification it defines a number of other

standards for interoperability:

¶ The fundamental process of interface negotiation through QueryInterface.

¶ A reference counting mechanism through objects (and their resources) are managed even when connected to

multiple clients.

9 Not only are there situations where there is a need for designs optimized for cross network efficiency, but there are also cases where in-process

efficiency is more important. Just as COM provides mechanisms whereby the remote case can be optimized (custom marshaling) it also al-
lows for the design of interfaces that are optimized for the in-process case.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 27 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

¶ Rules for memory allocation and responsibility for those allocations when exchanged between independently

developed components.

¶ Consistent and rich error reporting facilities.

In addition to being a specification, COM is also an implementation contained what is called the ñCOM Library.ò

The implementation is provided through a library (such as a DLL on Microsoft Windows) that includes:

¶ A small number of fundamental API functions that facilitate the creation of COM applications, both clients and

servers. For clients, COM supplies basic object creation functions; for servers the facilities to expose their ob-

jects.

¶ Implementation locator services through which COM determines from a class identifier which server imple-

ments that class and where that server is located. This includes support for a level of indirection, usually a sys-

tem registry, between the identity of an object class and the packaging of the implementation such that clients

are independent of the packaging which can change in the future.

¶ Transparent remote procedure calls when an object is running in a local or remote server, as illustrated in Figure

1-8 in the previous section.

¶ A standard mechanism to allow an application to control how memory is allocated within its process.

In general, only one vendor needs to, or should, implement a COM Library for any particular operating system. For

example, Microsoft has implemented COM on Microsoft Windows 3.1, Microsoft Windows 95, Microsoft Windows

NT, and the Apple Macintosh. Part V of this document specifies in detail the internals of the COM Library for

those vendors who wish to implement the COM Library on a platform for which it does not already have support.

7 COM as a Foundation

The binary standard of interfaces is the key to COMôs extensible architecture, providing the foundation upon which

is built the rest of COM and other systems such as OLE.

.1 COM Infrastructure

COM provides more than just the fundamental object creation and management facilities: it also builds an infra-

structure of three other core operating system components.

Persistent Storage: A set of interfaces and an implementation of those interfaces that create structured storage, oth-

erwise known as a ñfile system within a file.ò Information in a file is structured in a hierarchical fashion which ena-

bles sharing storage between processes, incremental access to information, transactioning support, and the ability for

any code in the system to browse the elements of information in the file. In addition, COM defines standard ñpersis-

tent storageò interfaces that objects implement to support the ability to save their persistent state to permanent, or

persistent, storage devices such that the state of the object can be restored at a later time.

Persistent, Intelligent Names (Monikers): The ability to give a specific instantiation of an object a particular name

that would allow a client to reconnect to that exact same object instance with the same state (not just another object

of the same class) at a later time. This also includes the ability to assign a name to some sort of operation, such as a

query, that could be repeatedly executed using only that name to refer to the operation. This level of indirection al-

lows changes to happen behind the name without requiring any changes to the client that stores that particular name.

This technology is centered around a type of object called a moniker and COM defines a set of interfaces that moni-

ker objects implement. COM also defines a standard composite moniker that is used to create complex names that are

built of simpler monikers. Monikers also implement one of the persistent storage interfaces meaning that they know

how to save their name or other information to somewhere permanent. Monikers are ñintelligentò because they know

how to take the name information and somehow relocate the specific object or perform an operation to which that

name refers.10

Uniform Data Transfer : Standard interfaces through which data is exchanged between a client and an object and

through which a client can ask an object to send notification (call event functions in the client) in case of a data

change. The standards include powerful structures used to describe data formats as well as the storage mediums on

which the data is exchanged.

The combination of the foundation and the infrastructure COM components reveals a system that describes how to

create and communicate with objects, how to store them, how to label to them, and how to exchange data with them.

10 Monikers are COMôs way of providing support for what other object systems (e.g. CORBA) call persistent interfaces.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 28 DRAFT: October 24, 1995

 All Rights Reserved

These four aspects of COM form the core of information management. Furthermore, the infrastructure components

not only build on the foundation, but monikers and uniform data transfer also build on storage as shown in Figure

1-9. The result is a system that is not only very rich, but also deep, which means that work done in an application to

implement lower level features is leveraged to build higher level features.

The Component Object Model and Component Objects

Intelligent NamesPersistent Storage

Uniform Data Transfer

Figure 1-9: COM is built in progressively higher level technologies that

depend upon lower level technologies.

.2 OLE

Microsoftôs OLE technology is really a collection of additional higher-level technologies that build upon COM and

its infrastructure. OLE version 2.0 was the first deployment of a subset of this COM specification that included sup-

port for in-process and local objects and all the infrastructure technologies but did not support remote objects. OLE 2

includes mostly user-interface oriented features based on usability, application integration, and automation of tasks.

All of these features are implemented by means of specific interfaces on different objects and defined sequences of

operation in both clients and servers and their relationships and dependencies on the lower level infrastructure of

COM is shown in Figure 1-10.

The Component Object Model and Component Objects

Intelligent Names

Automation

Persistent Storage

Uniform Data Transfer

Linking

Embedding

In-Place Activation

(Visual Editing)

Compound

Documents

Drag & Drop

COM

OLE

Figure 1-10: OLE builds its features on COM.

Drag & Drop : The ability to exchange data by picking up a selection with the mouse and visibly dropping it onto

another window.

Automation: The ability to create ñprogrammableò applications that can be driven externally from a script running

in another application to automate common end user tasks. Automation enables cross-application macro program-

ming.

Compound Documents: The ability to embed or link information in a central document encouraging a more docu-

ment-centric user interface. Also includes In-Place Activation (also called ñVisual Editingò) as a user interface im-

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 29 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

provement to embedding where the end user can works on information from different applications in the context of

the compound document without having to switch to other windows.

Microsoft in cooperation with other vendors is continuing to enhance OLE with new interfaces to extend compound

documents and to define architectures for creating components such as OLE Controls, OLE DB, OLE for Design &

Modeling, OLE for Healthcare, and in the future more system-level OLE architectures that build not only on the

COM infrastructure but also on the rest of OLE as well. Again, the key is leveraged work: by implementing lower

level features in an application you create a strong base of reusable code for higher level features.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 30 DRAFT: October 24, 1995

 All Rights Reserved

This page left intentionally blank.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 31 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Part II: Component Object Model Pr ogramming Interface

Part II contains the programming interface to COM, the suite of interfaces and APIs by which Component Object

Model software is implemented and used.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 32 DRAFT: October 24, 1995

 All Rights Reserved

This page intentionally left blank.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 33 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

2. Component Object Model Technical Overview

Chapter 1 introduced some important challenges and problems in computing today and the Component Object Model

as a solution to these problems. Chapter 1 introduced interfaces, mentioned the base interface called IUnknown, and

described how interfaces are generally used to communicate between an object and a client of that object, and ex-

plained the role that COM has in that communication to provide location transparency.

Yet there are plenty of topics that have not been covered in much technical detail, specifically, how certain mecha-

nisms work, some of the interfaces involved, and how some of these interfaces are used on a high level. This chapter

will describe COM in a more technical light but not going as far as describing individual interface functions or COM

Library API functions. Instead, this chapter will refer to later chapters in the COM Specification that cover various

topics in complete detail including the specifications for functions and interfaces themselves.

This chapter is generally organized in the same order as Chapter 1 and covers the following topics which are then

treated in complete detail in the indicated chapters:

¶ Objects and Interfaces: A comparison of interfaces to C++ classes, the IUnknown interface (including the

QueryInterface function and reference counting), the structure of an instantiated interface and the benefits of that

structure, and how clients of objects deal with interfaces. Chapter 3 covers the underlying interfaces and API

functions themselves.

¶ COM Applications: The responsibilities of all applications making use of COM which includes rules for

memory management. How applications meet these responsibilities is covered in Chapter 4.

¶ COM Clients and Servers: The roles and responsibilities of each specific type of application, the use of class

identifiers, and the COM Libraryôs role in providing communication. Chapter 5 and 6 treat COM Clients and

Servers separately. How COM achieves location transparency is described in Chapter 7.

¶ Reusability: A discussion about why implementation inheritance is not used in COM and what mechanisms are

instead available. How an object server is written to handle the COM mechanisms is a topic of Chapter 6.

¶ Connectable Objects: A brief overview of the connection point interfaces and semantics. The actual functional

specification of connectable objects is in Chapter 9.

¶ Persistent Storage: A detailed look at what persistent storage is, what benefits it holds for applications including

incremental access and transactioning support, leaving the APIs and interface specifications to Chapter 10.

¶ Persistent, Intelligent Names: Why it is important to assign names to individual object instantiations (as opposed

to a class identifier for an object class) and the mechanisms for such naming including moniker objects. The in-

terfaces a moniker implements as well as other support functions are described in Chapter 11.

¶ Uniform Data Transfer: The separation of transfer protocols from data exchange, improvements to data format

descriptions, the expansion of available exchange mediums (over global memory), and data change notification

mechanisms. New data structures and interfaces specified to support data transfer is given in Chapter 12.

1 Objects and Interfaces

Chapter 1 described that interfaces areðstrongly typed semantic contracts between client and objectðand that an

object in COM is any structure that exposes its functionality through the interface mechanism. In addition, Chapter 1

noted how interfaces follow a binary standard and how such a standard enables clients and objects to interoperate

regardless of the programming languages used to implement them. While the type of an interface is by colloquial

convention referred to with a name starting with an ñIò (for interface), this name is only of significance in

source-level programming tools. Each interface itselfðthe immutable contract, that isðas a functional group is

referred to at runtime with a globally-unique interface identifier, an ñIIDò that allows a client to ask an object if it

supports the semantics of the interface without unnecessary overhead and without versioning problems. Clients ask

questions using a QueryInterface function that all objects support through the base interface, IUnknown.

Furthermore, clients always deal with objects through interface pointers and never directly access the object itself.

Therefore an interface is not an object, and an object can, in fact, have more than one interface if it has more than

one group of functionality it supports.

Letôs now turn to how interfaces manifest themselves and how they work.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 34 DRAFT: October 24, 1995

 All Rights Reserved

.1 Interfaces and C++ Classes

As just reiterated, an interface is not an object, nor is it an object class. Given an interface definition by itself, that is,

the type definition for an interface name that begins with ñI,ò you cannot create an object of that type. This is one

reason why the prefix ñIò is used instead of the common C++ convention of using a ñCò to prefix an object class,

such as CMyClass. While you can instantiate an object of a C++ class, you cannot instantiate an object of an interface

type.

In C++ applications, interfaces are, in fact, defined as abstract base classes. That is, the interface is a C++ class that

contains nothing but pure virtual member functions. This means that the interface carries no implementation and only

prescribes the function signatures for some other class to implementðC++ compilers will generate compile-time

errors for code that attempts to instantiate an abstract base class. C++ applications implement COM objects by inher-

iting these function signatures from one or more interfaces, overriding each interface function, and providing an

implementation of each function. This is how a C++ COM application ñimplements interfacesò on an object.

Implementing objects and interfaces in other languages is similar in nature, depending on the language. In C, for

example, an interface is a structure containing a pointer to a table of function pointers, one for each method in the

interface. It is very straightforward to use or to implement a COM object in C, or indeed in any programming lan-

guage which supports the notion of function pointers. No special tools or language enhancements are required

(though of course such things may be desirable).

The abstract-base class comparison exposes an attribute of the ñcontractò concept of interfaces: if you want to im-

plement any single function in an interface, you must provide some implementation for every function in that inter-

face. The implementation might be nothing more than a single return statement when the object has nothing to do in

that interface function. In most cases there is some meaningful implementation in each function, but the number of

lines of code varies greatly (one line to hundreds, potentially).

A particular object will provide implementations for the functions in every interface that it supports. Objects which

have the same set of interfaces and the same implementations for each are often said (loosely) to be instances of the

same class because they generally implement those interfaces in a certain way. However, all access to the instances

of the class by clients will only be through interfaces; clients know nothing about an object other than it supports

certain interfaces. As a result, classes play a much less significant role in COM than they do in other object oriented

systems.

COM uses the word ñinterfaceò in a sense different from that typically used in object-oriented programming using

C++. In the C++ context, ñinterfaceò describes all the functions that a class supports and that clients of an object can

call to interact with it. A COM interface refers to a pre-defined group of related functions that a COM class imple-

ments, but does not necessarily represent all the functions that the class supports. This separation of an objectôs func-

tionality into groups is what enables COM and COM applications to avoid the problems inherent with versioning

traditional all-inclusive interfaces.

.2 Interfaces and Inheritance

COM separates class hierarchy (or indeed any other implementation technology) from interface hierarchy and both of

those from any implementation hierarchy. Therefore, interface inheritance is only applied to reuse the definition of

the contract associated with the base interface. There is no selective inheritance in COM: if one interface inherits

from another, it includes all the functions that the other interface defines, for the same reason than an object must

implement all interface functions it inherits.

Inheritance is used sparingly in the COM interfaces. Most of the pre-defined interfaces inherit directly from IUnknown

(to receive the fundamental functions like QueryInterface), rather than inheriting from another interface to add more

functionality. Because COM interfaces are inherited from IUnknown, they tend to be small and distinct from one an-

other. This keeps functionality in separate groups that can be independently updated from the other interfaces, and

can be recombined with other interfaces in semantically useful ways.

In addition, interfaces only use single inheritance, never multiple inheritance, to obtain functions from a base inter-

face. Providing otherwise would significantly complicate the interface method call sequence, which is just an indirect

function call, and, further, the utility of multiple inheritance is subsumed within the capabilities provided by

QueryInterface.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 35 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

.3 Interface Definitions: IDL

When a designer creates an interface, that designer usually defines it using an Interface Description Language (IDL).

From this definition an IDL compiler can generate header files for programming languages such that applications can

use that interface, create proxy and stub objects to provide for remote procedure calls, and output necessary to enable

RPC calls across a network.

IDL is simply a tool (one of possibly many) for the convenience of the interface designer and is not central to COMôs

interoperability. It really just saves the designer from manually creating many header files for each programming

environment and from creating proxy and stub objects by hand, which would not likely be a fun task.

Chapter 13 describes the Microsoft Interface Description Language in detail. In addition, Chapter 14 covers Type

Libraries which are the machine readable form of IDL, used by tools and other components at runtime.

.4 Basic Operations: The IUnknown Interface

All objects in COM, through any interface, allow clients access to two basic operations:

¶ Navigating between multiple interfaces on an object through the QueryInterface function.

¶ Controlling the objectôs lifetime through a reference counting mechanism handled with functions called AddRef

and Release.

Both of these operations as well as the three functions (and only these three) make up the IUnknown interface from

which all other interfaces inherit. That is, all interfaces are polymorphic with IUnknown so they all contain

QueryInterface, AddRef, and Release functions.

.1 Navigating Multiple Interfaces: the QueryInterface Function

As described in Chapter 1, QueryInterface is the mechanism by which a client, having obtained one interface pointer

on a particular object, can request additional pointers to other interfaces on that same object. An input parameter to

QueryInterface is the interface identifier (IID) of the interface being requested. If the object supports this interface, it

returns that interface on itself through an accompanying output parameter typed as a generic void; if not, the object

returns an error.

In effect, what QueryInterface accomplishes is a switch between contracts on the object. A given interface embodies

the interaction that a certain contract requires. Interfaces are groups of functions because contracts in practice invar-

iably require more than one supporting function. QueryInterface separates the request ñDo you support a given con-

tract?ò from the high-performance use of that contract once negotiations have been successful. Thus, the (minimal)

cost of the contract negotiation is amortized over the subsequent use of the contract.

Conversely, QueryInterface provides a robust and reliable way for a component to indicate that in fact does not support

a given contract. That is, if using QueryInterface one asks an ñoldò object whether it supports a ñnewò interface (one,

say, that was invented after the old object has been shipped), then the old object will reliably and robustly answer

ñno;ò the technology which supports this is the algorithm by which IIDs are allocated. While this may seem like a

small point, it is excruciatingly important to the overall architecture of the system, and this capability to robustly

inquire of old things about new functionality is, surprisingly, a feature not present in most other object architectures.

The strengths and benefits of the QueryInterface mechanism need not be reiterated here further, but there is one press-

ing issue: how does a client obtain its first interface pointer to an object? That question is of central interest to COM

applications but has no one answer. There are, in fact, four methods through which a client obtains its first interface

pointer to a given object:

¶ Call a COM Library API function that creates an object of a pre-determined typeðthat is, the function will only

return a pointer to one specific interface for a specific object class.

¶ Call a COM Library API function that can create an object based on a class identifier and that returns any type

interface pointer requested.

¶ Call a member function of some interface that creates another object (or connects to an existing one) and returns

an interface pointer on that separate object.11

¶ Implement an object with an interface through which other objects pass their interface pointer to the client di-

rectly. This is the case where the client is an object implementor and passes a pointer to its object to another ob-

ject to establish a bi-directional connection.

11 Connecting to objects through an ñintelligent/persistent nameò (moniker) falls into this category.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 36 DRAFT: October 24, 1995

 All Rights Reserved

.2 Reference Counting: Controlling Object Life -cycle

Just like an application must free memory it allocated once that memory is no longer in use, a client of an object is

responsible for freeing the object when that object is no longer needed. In an object-oriented system the client can

only do this by giving the object an instruction to free itself.

However, the difficulty lies in having the object know when it is safe to free itself. COM objects, which are dynami-

cally allocated, must allow the client to decide when the object is no longer in use, especially for local or remote

objects that may be in use by multiple clients at the same timeðthe object must wait until all clients are finished

with it before freeing itself.

COM specifies a reference counting mechanism to provide this control. Each object maintains a 32-bit reference

count that tracks how many clients are connected to it, that is, how many pointers exist to any of its interfaces in any

client. The use of a 32-bit counter (more than four billions clients) means that thereôs virtually no chance of over-

loading the count.

The two IUnknown functions of AddRef and Release that all objects must implement control the count: AddRef incre-

ments the count and Release decrements it. When the reference count is decremented to zero, Release is allowed to

free the object because no one else is using it anywhere. Most objects have only one implementation of these func-

tions (along with QueryInterface) that are shared between all interfaces, though this is just a common implementation

approach. Architecturally, from a clientôs perspective, reference counting is strictly and clearly a per-interface no-

tion.

Whenever a client calls a function that returns a new interface pointer to it, such as QueryInterface, the function being

called is responsible for incrementing the reference count through the returned pointer. For example, when a client

first creates an object it receives back an interface pointer to an object that, from the clientôs point of view, has a

reference count of one. If the client calls QueryInterface once for another interface pointer, the reference count is two.

The client must then call Release through both pointers (in any order) to decrement the reference count to zero before

the object as a whole can free itself.

In general, every copy of any pointer to any interface requires a reference count on it. Chapter 3, however, identifies

some important optimizations that can be made to eliminate extra unnecessary overhead with reference counting and

identifies the specific cases in which calling AddRef is absolutely necessary.

.5 How an Interface Works

An instantiation of an interface implementation (because the defined interfaces themselves cannot be instantiated

without implementation) is simply pointer to an array of pointers to functions. Any code that has access to that ar-

rayða pointer through which it can access the arrayðcan call the functions in that interface. In reality, a pointer to

an interface is actually a pointer to a pointer to the table of function pointers. This is an inconvenient way to speak

about interfaces, so the term ñinterface pointerò is used instead to refer to this multiple indirection. Conceptually,

then, an interface pointer can be viewed simply as a pointer to a function table in which you can call those functions

by dereferencing them by means of the interface pointer as shown in Figure 2-1.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 37 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

pointer

Interface Function Table

Interface Pointer

Pointer to Function1

Function1(...)

{

...

}

Pointer to Function2

Pointer to Function3

...

Function2(...)

{

...

}

Function3(...)

{

...

}

...

Figure 2-1: An interface pointer is a pointer to a pointer to an array of pointers

to the functions in the interface.

Since these function tables are inconvenient to draw they are represented with the ñplug-in jackò or ñbubbles and

push-pinsò diagram first shown in Chapter 1 to mean exactly the same thing:

Interface Pointer Object

Objects with multiple interfaces are merely capable of providing more than one function table. Function tables can

be created manually in a C application or almost automatically with C++ (and other object oriented languages that

support COM). Chapter 3 describes exactly how this is accomplished along with how the implementation of the

interface functions know exactly which object is being used at any given time.

With appropriate compiler support (which is inherent in C and C++), a client can call an interface function through

the name of the function and not its position in the array. The names of functions and the fact that an interface is a

type allows the compiler to check the types of parameters and return values of each interface function call. In con-

trast, such type-checking is not available even in C or C++ if a client used a position-based calling scheme.

.6 Interfaces Enable Interoperability

COM is designed around the use of interfaces because interfaces enable interoperability. There are three properties of

interfaces that provide this: polymorphism, encapsulation, and transparent remoting.

.1 Polymorphism

Polymorphism means the ability to assume many forms, and in object-oriented programming it describes the ability

to have a single statement invoke different functions at different times. All COM interfaces are polymorphic; when

you call a function using an interface pointer, you donôt specify which implementation is invoked. A call to

pInterface->SomeFunction can cause different code to run depending on what kind of object is the implementor of the

interface pointed by pInterfaceðwhile the semantics of the function are always the same, the implementation details

can vary.

Because the interface standard is a binary standard, clients that know how to use a given interface can interact with

any object that supports that interface no matter how the object implements that contract. This allows interoperability

as you can write an application that can cooperate with other applications without you knowing who or what they are

beforehand.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 38 DRAFT: October 24, 1995

 All Rights Reserved

.2 Encapsulation

Other advantages of COM arise from its enforcement of encapsulation. If you have implemented an interface, you

can change or update the implementation without affecting any of the clients of your class. Similarly, you are im-

mune to changes that others make in their implementations of their interfaces; if they improve their implementation,

you can benefit from it without recompiling your code.

This separation of contract and implementation can also allow you to take advantage of the different implementa-

tions underlying an interface, even though the interface remains the same. Different implementations of the same

interface are interchangeable, so you can choose from multiple implementations depending on the situation.

Interfaces provides extensibility; a class can support new functionality by implementing additional interfaces without

interfering with any of its existing clients. Code using an objectôs ISomeInterface is unaffected if the class is revised to

in addition support IAnotherInterface.

.3 Transparent Remoting

COM interfaces allow one application to interact with others anywhere on the network just as if they were on the

same machine. This expands the range of an objectôs interoperability: your application can use any object that sup-

ports a given contract, no matter how the object implements that contract, and no matter what machine the object

resides on.

Before COM, class code such as C++ class libraries ran in same process, either linked into the executable or as a

dynamic-link library. Now class code can run in a separate process, on the same machine or on a different machine,

and your application can use it with no special code. COM can intercept calls to interfaces through the function table

and generate remote procedure calls instead.

2 COM Application Responsibilities

Each process that uses COM in any wayðclient, server, object implementorðis responsible for three things:

1. Verify that the COM Library is a compatible version with the COM function CoBuildVersion.

2. Initialize the COM Library before using any other functions in it by calling the COM function CoInitialize.

3. Un-initialize the COM Library when it is no longer in use by calling the COM function CoUninitialize.

While these responsibilities and functions are covered in detail in Chapter 4, note first that most COM Library func-

tions, primarily those that deal with the COM foundation, are prefixed with ñCoò to identify their origin. The COM

Library may implement other functions to support persistent storage, naming, and data transfer without the ñCoò

prefix.

.1 Memory Management Rules

In COM there are many interface member functions and APIs which are called by code written by one programming

organization and implemented by code written by another. Many of the parameters and return values of these func-

tions are of types that can be passed around by value; however, sometimes there arises the need to pass data struc-

tures for which this is not the case, and for which it is therefore necessary that the caller and the callee agree as to the

allocation and de-allocation policy. This could in theory be decided and documented on an individual function by

function basis, but it is much more reasonable to adopt a universal convention for dealing with these parameters.

Also, having a clear convention is important technically in order that the COM remote procedure call implementation

can correctly manage memory.

Memory management of pointers to interfaces is always provided by member functions in the interface in question.

For all the COM interfaces these are the AddRef and Release functions found in the IUnknown interface, from which

again all other COM interfaces derive (as described earlier in this chapter). This section relates only to non-by-value

parameters which are not pointers to interfaces but are instead more mundane things like strings, pointers to struc-

tures, etc.

The COM Library provides an implementation of a memory allocator (see CoGetMalloc and CoTaskMemAlloc). When-

ever ownership of an allocated chunk of memory is passed through a COM interface or between a client and the

COM library, this allocator must be used to allocate the memory.12

12 Any internally-used memory in COM and in-process objects can use any allocation scheme desired, but the COM memory allocator is a handy,

efficient, and thread-safe allocator.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 39 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Each parameter to and the return value of a function can be classified into one of three groups: an in parameter, an

out parameter (which includes return values), or an in-out parameter. In each class of parameter, the responsibility

for allocating and freeing non-by-value parameters is the following:

in parameter Allocated and freed by the caller.

out parameter Allocated by the callee; freed by the caller.

in-out parameter Initially allocated by the caller, then freed and re-allocated by the callee if nec-

essary. As with out parameters, the caller is responsible for freeing the final re-

turned value.

In the latter two cases there is one piece of code that allocates the memory and a different piece of code that frees it.

In order for this to be successful, the two pieces of code must of course have knowledge of which memory allocator

is being used. Again, it is often the case that the two pieces of code are written by independent development organi-

zations. To make this work, we require that the COM allocator be used.

Further, the treatment of out and in-out parameters in failure conditions needs special attention. If a function returns

a status code which is a failure code, then in general the caller has no way to clean up the out or in-out parameters.

This leads to a few additional rules:

out parameter In error returns, out parameters must be always reliably set to a value which will

be cleaned up without any action on the callerôs part. Further, it is the case that

all out pointer parameters (usually passed in a pointer-to-pointer parameter, but

which can also be passed as a member of a caller-allocate callee-fill structure)

must explicitly be set to NULL. The most straightforward way to ensure this is

(in part) to set these values to NULL on function entry.13

 (On success returns, the semantics of the function of course determine the legal

return values.)

in-out parameter In error returns, all in-out parameters must either be left alone by the callee (and

thus remaining at the value to which it was initialized by the caller; if the caller

didnôt initialize it, then itôs an out parameter, not an in-out parameter) or be ex-

plicitly set as in the out parameter error return case.

The specific COM APIs and interfaces that apply to memory management are discussed further below.

Remember that these memory management conventions for COM applications apply only across public interfaces

and APIsðthere is no requirement at all that memory allocation strictly internal to a COM application need be done

using these mechanisms.

3 The COM Client/Server Model

Chapter 1 mentioned how COM supports a model of client/server interaction between a user of an objectôs services,

the client, and the implementor of that object and its services, the server. To be more precise, the client is any piece

of code (not necessarily an application) that somehow obtains a pointer through which it can access the services of an

object and then invokes those services when necessary. The server is some piece of code that implements the object

and structures in such a way that the COM Library can match that implementation to a class identifier, or CLSID.

The involvement of a class identifier is what differentiates a server from a more general object implementor.

The COM Library uses the CLSID to provide ñimplementation locatorò services to clients. A client need only tell

COM the CLSID it wants and the type of serverðin-process, local, or remoteðthat it allows COM to load or

launch. COM, in turn, locates the implementation of that class and establishes a connection between it and the client.

This relationship between client, COM, and server is illustrated in Figure 2-2 on the next page.

Chapter 1 also introduced the idea of Location transparency, where clients and servers never need to know how far

apart they actually are, that is, whether they are in the same process, different processes, or different machines.

This section now takes a closer look at the mechanisms in COM that make this transparency work as well as the

responsibilities of client and server applications.

13 This rule is stronger than it might seem to need to be in order to promote more robust application interoperability.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 40 DRAFT: October 24, 1995

 All Rights Reserved

Client

Application

COM

Server

Object

(1) ñCreate

Objectò (2) Locate

implementation

(3) Get object

interface iointer,

return to Client

(4) Call interface

members

Figure 2-2: Clients locate and access objects through implementation locator

services in COM. COM then connects the client to the object in a server. Compare

this with Figure 1-2 in Chapter 1.

.1 COM Objects and Class Identifiers

A COM class is a particular implementation of certain interfaces; the implementation consists of machine code that

is executed whenever you interact with an instance of the COM class. COM is designed to allow a class to be used

by different applications, including applications written without knowledge of that particular classôs existence.

Therefore class code exists either in a dynamic linked library (DLL) or in another application (EXE). COM specifies a

mechanism by which the class code can be used by many different applications.

A COM object is an object that is identified by a unique 128-bit CLSID that associates an object class with a particu-

lar DLL or EXE in the file system. A CLSID is a GUID itself (like an interface identifier), so no other class, no matter

what vendor writes it, has a duplicate CLSID. Servers implementors generally obtain CLSIDs through the CoCreateGUID

function in COM, or through a COM-enabled tool that internally calls this function.

The use of unique CLSIDs avoids the possibility of name collisions among classes because CLSIDs are in no way con-

nected to the names used in the underlying implementation. So, for example, two different vendors can write classes

which they call ñStackClass,ò but each will have a unique CLSID and therefore avoid any possibility of a collision.

Further, no central authoritative and bureaucratic body is needed to allocate or assign CLSIDs. Thus, server imple-

mentors across the world can independently develop and deploy their software without fear of accidental collision

with software written by others.

On its host system, COM maintains a registration database (or ñregistryò) of all the CLSIDs for the servers installed

on the system, that is, a mapping between each CLSID and the location of the DLL or EXE that houses the server for

that CLSID. COM consults this database whenever a client wants to create an instance of a COM class and use its

services. That client, however, only needs to know the CLSID which keeps it independent of the specific location of

the DLL or EXE on the particular machine.

If a requested CLSID is not found in the local registration database, various other administratively-controlled algo-

rithms are available by which the implementation is attempted to be located on the network to which the local ma-

chine may be attached; these are explained in more detail below.

Given a CLSID, COM invokes a part of itself called the Service Control Manager (SCM14) which is the system ele-

ment that locates the code for that CLSID. The code may exist as a DLL or EXE on the same machine or on another

machine: the SCM isolates most of COM, as well as all applications, from the specific actions necessary to locate

code. Weôll return a discussion of the SCM in a moment after examining the roles of the client and server applica-

tions.

.2 COM Clients

Whatever application passes a CLSID to COM and asks for an instantiated object in return is a COM Client. Of

course, since this client uses COM, it is also a COM application that must perform the required steps described above

and in subsequent chapters.

14 Colloquially, of course, pronounced ñscum.ò

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 41 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Regardless of the type of server in use (in-process, local, or remote), a COM Client always asks COM to instantiate

objects in exactly the same manner. The simplest method for creating one object is to call the COM function

CoCreateInstance. This creates one object of the given CLSID and returns an interface pointer of whatever type the

client requests. Alternately, the client can obtain an interface pointer to what is called the ñclass factoryò object for a

CLSID by calling CoGetClassObject. This class factory supports an interface called IClassFactory through which the

client asks that factory to manufacture an object of its class. At that point the client has interface pointers for two

separate objects, the class factory and an object of that class, that each have their own reference counts. Itôs an im-

portant distinction that is illustrated in Figure 2-3 and clarified further in Chapter 5.

Class Factory

Object

Server

Client

(1) ñCreate

an Objectò

(2) Manufacture

Object

(3) Return new

interface pointer

to client

Figure 2-3: A COM Client creates objects through a class factory.

The CoCreateInstance function internally calls CoGetClassObject itself. Itôs just a more convenient function for clients

that want to create one object.

The bottom line is that a COM Client, in addition to its responsibilities as a COM application, is responsible to use

COM to obtain a class factory, ask that factory to create an object, initialize the object, and to call that objectôs (and

the class factoryôs) Release function when the client is finished with it. These steps are the bulk of Chapter 5 which

also explains some features of COM that allow clients to manage when servers are loaded and unloaded to optimize

performance.

.3 COM Servers

There are two basic kinds of object servers:

¶ Dynamic Link Library (DLL) Based: The server is implemented in a module that can be loaded into, and will

execute within, a clientôs address space. (The term DLL is used in this specification to describe any shared li-

brary mechanism that is present on a given COM platform.)

¶ EXE Based: The server is implemented as a stand-alone executable module.

Since COM allows for distributed objects, it also allows for the two basic kinds of servers to implemented on a re-

mote machine. To allow client applications to activate remote objects, COM defines the Service Control Manager

(SCM) whose role is described below under ñThe COM Library.ò

As a client is responsible for using a class factory and for server management, a server is responsible for implement-

ing the class factory, implementing the class of objects that the factory manufactures, exposing the class factory to

COM, and providing for unloading the server under the right conditions. A diagram illustrating what exists inside a

server module (EXE or DLL) is shown in Figure 2-4.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 42 DRAFT: October 24, 1995

 All Rights Reserved

IClassFactory Class Factory:

creates Object

Object
Object Interfaces

(as many as desired)

Exposure for

 class factory

Unloading

 mechanism

Implementation

differs for DLLs

and EXEs.

Implementation

identical for any

module.

Server Module

Figure 2-4: The general structure of a COM server.

How a server accomplishes these requirements depends on whether the server is implemented as a DLL or EXE, but is

independent of whether the server is on the same machine as the client or on a remote machine. That is, remote serv-

ers are the same as local servers but have been registered to be visible to remote clients. Chapter 6 goes into all the

necessary details about these implementations as well as how the server publishes its existence to COM in the regis-

tration database.

A special kind of server is called an ñcustom object handlerò that works in conjunction with a local server to provide

a partial in-process implementation of an object class.15 Since in-process code is normally much faster to load,

in-process calls are extremely fast, and certain resources can be shared only within a single process space, handlers

can help improve performance of general object operations as well as the quality of operations such as printing. An

object handler is architecturally similar to an in-process server but with more specialized semantics for its use. While

the client can control the loading of handlers, it doesnôt have to do any special work whatsoever to work with them.

The existence of a handler changes nothing for clients.

.4 The COM Library and Service Control Manager

As described in Chapter 1, the COM Library itself is the implementation of the standard API functions defined in

COM along with support for communicating between objects and clients. The COM Library is then the underlying

ñplumbingò that makes everything work transparently through RPC as shown in Figure 2-5 (this the same figure as

Figure 1-8 in Chapter 1, repeated here for convenience). Whenever COM determines that it has to establish commu-

nication between a client and a local or remote server, it creates ñproxyò objects that act as in-process objects to the

client. These proxies then talk to ñstubò objects that are in the same process as the server and can call the server di-

rectly. The stubs pick up RPC calls from the proxies, turn them into function calls to the real object, then pass the

return values back to the proxy via RPC which in turn returns them to the client.16 The underlying remote procedure

call mechanism is based on the standard DCE remote procedure call mechanism.

15 Strictly speaking, the ñhandlerò is simply the representative of a remote object that resides in the clientôs process and which internally contains

the remote connection. There is thus always a handler present when remoting is being done, though very often the handler is a trivial one which

merely forwards all calls. In that sense, ñhandlerò is synonymous with the terms ñproxy objectò or ñobject proxy.ò In practice the term ñhan-
dlerò tends to be used more when there is in fact a non-trivial handler, with ñproxyò usually used when the handler is in fact trivial.

16 Readers more familiar with RPC than with COM will recognize ñclient stubò and ñserver stubò rather than ñproxyò and ñstubò but the phrases
are analogous.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 43 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

In-Process

Object

Client

Application

Local

Object

Proxy

Remote

Object

Proxy

In-Process Server

COM

Client Process

RPC

RPC

Local

Object

Local Server

Stub

COM

Local Server Process

Remote

Object

Remote Server

Stub

COM

Remote Server Process

Remote Machine

Figure 2-5: COM provides transparent access to local and remote servers

through proxy and stub objects.

.5 Architecture for Distributed Objects

The COM architecture for object distribution is similar to the remoting architecture. When a client wants to connect

to a server object, the name of the server is stored in the system registry. With distributed objects, the server can

implemented as an in-process DLL, a local executable, or as executable or DLL running remotely. A component

called the Service Control Manager (SCM) is responsible for locating the server and running it. The next section,

ñThe Service Control Managerò, explains the role of the SCM in greater depth and Chapter 15 contains the specifica-

tion for itôs interfaces.

Making a call to an interface method in a remote object involves the cooperation of several components. The inter-

face proxy is a piece of interface-specific code that resides in the clientôs process space and prepares the interface

parameters for transmittal. It packages, or marshals, them in such a way that they can be recreated and understood in

the receiving process. The interface stub, also a piece of interface-specific code, resides in the serverôs process space

and reverses the work of the proxy. The stub unpackages, or unmarshals, the sent parameters and forwards them on

to the server. It also packages reply information to send back to the client.

The actual transmitting of the data across the network is handled by the RPC runtime library and the channel, part of

the COM library. The channel works transparently with different channel types and supports both single and mul-

ti-threaded applications.

The flow of communication between the components involved in interface remoting is shown in Figure 2-6. On the

client side of the process boundary, the clientôs method call goes through the proxy and then onto the channel. Note

that the channel is part of the COM library. The channel sends the buffer containing the marshaled parameters to the

RPC runtime library who transmits it across the process boundary. The RPC runtime and the COM libraries exist on

both sides of the process.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 44 DRAFT: October 24, 1995

 All Rights Reserved

COM Library

Process

Boundary
Client

Proxy

Channel

RPC Runtime

Transport

COM Library

Object

Stub

Channel

RPC Runtime

Transport

Figure 2-6. Components of COMôs distributed architecture.

.6 The Service Control Manager

The Service Control Manager ensures that when a client request is made, the appropriate server is connected and

ready to receive the request. The SCM keeps a database of class information based on the system registry that the

client caches locally through the COM library. This is the basis for COMôs implementation locator services as shown

in Figure 2-7.

When a client makes a request to create an object of a CLSID, the COM Library contacts the local SCM (the one on

the same machine) and requests that the appropriate server be located or launched, and a class factory returned to the

COM Library. After that, the COM Library, or the client, can ask the class factory to create an object.

The actions taken by the local SCM depend on the type of object server that is registered for the CLSID:

In-Process The SCM returns the file path of the DLL containing the object server imple-

mentation. The COM library then loads the DLL and asks it for its class factory

interface pointer.

Local The SCM starts the local executable which registers a class factory on startup.

That pointer is then available to COM.

Remote The local SCM contacts the SCM running on the appropriate remote machine

and forwards the request to the remote SCM. The remote SCM launches the

server which registers a class factory like the local server with COM on that re-

mote machine. The remote SCM then maintains a connection to that class factory

and returns an RPC connection to the local SCM which corresponds to that re-

mote class factory. The local SCM then returns that connection to COM which

creates a class factory proxy which will internally forward requests to the remote

SCM via the RPC connection and thus on to the remote server.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 45 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Note that if the remote SCM determines that the remote server is actually an in-process server, it launches a ñsurro-

gateò server that then loads that in-process server. The surrogate does nothing more than pass all requests on through

to the loaded DLL.

.7 Application Security

The technology in COM provides security for applications, regardless of whether they run remotely. There is a de-

fault level of security that is provided to non-security-aware applications such as existing OLE applications. Beyond

the default, applications that are security-aware can control who is granted access to their services and the type of

access that is granted.

Default security insures that system integrity is maintained. When multiple users require the services of a single

non-security-aware server, a separate instance for each user is run. Each client/server connection remains independ-

ent from the others, preventing clients from accessing each othersô data. All non-security-aware servers are run as the

security principal who caused them to run. An example involving four clients that all require server ñXò is illustrated

in Figure 2-8. Since two of the clients are the same user (User2), one instance of server X can service both clients.

The technology used in COM for distribution implements this security system with the authentication services pro-

vided by RPC. These services are accessed by applications through the COM library when a call is made to

CoInitialize. This security system imposes a restriction on where non-security-aware applications can run. Since the

system cannot start a session on another machine without the proper credentials, all servers that run in the client

security context normally run where their client is running. The AtBits attrib-

ute associated with that class controls where a server is run.

Security-aware servers are those applications that do not allow global access

to their services. These servers may run either where the client is running,

where their data is stored, or elsewhere depending on a rich set of activation

rules. Rather than running as one of their clients; security-aware servers are

themselves security principals. Security-aware servers may participate in

two-way authentication whereby clients can ask for verification. Securi-

ty-aware servers can use the services offered by the RPC security provid-

er(s) or supply their own security implementation.

4 Object Reusability

An important goal of any object model is that component authors can reuse

and extend objects provided by others as pieces of their own component

Client

Application

Local

Object

Proxy

Remote

Object

Proxy

COM

RPC Connection

to Remote Server

RPC Connection

to Local Server

(1) Client:

ñCreate

an Objectò

SCM:
Locates,

runs servers,

(3) ñHereôs your

Connectionò

(2) COM: ñFind

a Serverò
In-Process

Object

Local

Object

Remote

Object

(4) COM:

ñHereôs your

pointerò

Ask remote SCM

to launch application

Launch application

Figure 2-7: COM delegates responsibility of loading and launching servers to the SCM.

Client 1

(User 1)

Client 2

(User 2)

Client 3

(User 2)

Client 4

(User 3)

Started by

User 1

Started by

User 2

Started by

User 3

Clients Server

Figure 2-8. A non-security-aware

server

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 46 DRAFT: October 24, 1995

 All Rights Reserved

implementations. Implementation inheritance is one way this can be achieved: to reuse code in the process of build-

ing a new object, you inherit implementation from it and override methods in the tradition of C++ and other lan-

guages. However, as a result of many years experience, many people believe traditional language-style implementa-

tion inheritance technology as the basis for object reuse is simply not robust enough for large, evolving systems

composed of software components. (See page 16 for more information.) For this reason COM introduces other reus-

ability mechanisms.

.1 COM Reusability Mechanisms

The key point to building reusable components is black-box reuse which means the piece of code attempting to reuse

another component knows nothing, and does not need to know anything, about the internal structure or implementa-

tion of the component being used. In other words, the code attempting to reuse a component depends upon the be-

havior of the component and not the exact implementation.

To achieve black-box reusability, COM supports two mechanisms through which one object may reuse another. For

convenience, the object being reused is called the ñinner objectò and the object making use of that inner object is the

ñouter object.ò

1. Containment/Delegation: the outer object behaves like an object client to the inner object. The

outer object ñcontainsò the inner object and when the outer object wishes to use the services of the

inner object the outer object simply delegates implementation to the inner objectôs interfaces. In

other words, the outer object uses the innerôs services to implement itself. It is not necessary that

the outer and inner objects support the same interfaces; in fact, the outer object may use an inner

objectôs interface to help implement parts of a different interface on the outer object especially

when the complexity of the interfaces differs greatly.

2. Aggregation: the outer object wishes to expose interfaces from the inner object as if they were im-

plemented on the outer object itself. This is useful when the outer object would always delegate

every call to one of its interfaces to the same interface of the inner object. Aggregation is a con-

venience to allow the outer object to avoid extra implementation overhead in such cases.

These two mechanisms are illustrated in Figures 2-9 and 2-10. The important part to both these mechanisms is how

the outer object appears to its clients. As far as the clients are concerned, both objects implement interfaces A, B, and

C. Furthermore, the client treats the outer object as a black box, and thus does not care, nor does it need to care,

about the internal structure of the outer objectðthe client only cares about behavior.

Containment is simple to implement for an outer object: during its creation, the outer object creates whatever inner

objects it needs to use as any other client would. This is nothing newðthe process is like a C++ object that itself

contains a C++ string object that it uses to perform certain string functions even if the outer object is not considered a

ñstringò object in its own right.

Inner Object:
Contained inside

Outer Object

A

B

C

IUnknown knows

A, B, and C

IUnknown

controls Inner

Object lifetime

Outer Object

C

Outer Object uses

Inner Objectôs C

implementation

as any client.

External

Interfaces

Figure 2-9: Containment of an inner object and delegation to its interfaces.

Aggregation is almost as simple to implement, the primary difference being the implementation of the three IUnknown

functions: QueryInterface, AddRef, and Release. The catch is that from the clientôs perspective, any IUnknown function

on the outer object must affect the outer object. That is, AddRef and Release affect the outer object and QueryInterface

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 47 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

exposes all the interfaces available on the outer object. However, if the outer object simply exposes an inner objectôs

interface as itôs own, that inner objectôs IUnknown members called through that interface will behave differently than

those IUnknown members on the outer objectôs interfaces, a sheer violation of the rules and properties governing

IUnknown.

The solution is for the outer object to somehow pass the inner object some IUnknown pointer to which the inner object

can re-route (that is, delegate) IUnknown calls in its own interfaces, and yet there must be a method through which the

outer object can access the inner objectôs IUnknown functions that only affect the inner object. COM provides specific

support for this solution as described in Chapter 6.

Inner Object:
Contained inside

Outer Object

A

B

C

IUnknown knows

A, B, and C

IUnknown

controls Inner

Object lifetime

Outer Object

Inner Objectôs

C exposed directly

from Outer Object

External

Interfaces

Inner Object

delegates IUnknown

calls to Outer Object

Figure 2-10: Aggregation of an inner object where the outer object exposes one or

more of the inner objectôs interfaces as itôs own.

5 Connectable Objects and Events

In the preceding discussions of interfaces it was implied that, from the objectôs perspective, the interfaces were ñin-

comingò. ñIncoming,ò in the context of a client-object relationship, implies that the object ñlistensò to what the

client has to say. In other words, incoming interfaces and their member functions receive input from the outside.

COM also defines mechanisms where objects can support ñoutgoingò interfaces. Outgoing interfaces allow ob-

jects to have two-way conversations, so to speak, with clients. When an object supports one or more outgoing in-

terfaces, it is said to be connectable. One of the most obvious uses for outgoing interfaces is for event notification.

This section describes Connectable Objects.17

A connectable object (also called a source) can have as many outgoing interfaces as it likes. Each interface is

composed of distinct member functions, with each function representing a single event, notification, or request.

Events and notifications are equivalent concepts (and interchangeable terms), as they are both used to tell the client

that something interesting happened in the object. Events and notifications differ from a request in that the object

expects response from the client. A request, on the other hand, is how an object asks the client a question and ex-

pects a response.

In all of these cases, there must be some client that listens to what the object has to say and uses that information

wisely. It is the client, therefore, that actually implements these interfaces on objects called sinks. From the sinkôs

perspective, the interfaces are incoming, meaning that the sink listens through them. A connectable object plays the

role of a client as far as the sink is concerned; thus, the sink is what the objectôs client uses to listen to that object.

An object doesnôt necessarily have a one-to-one relationship with a sink. In fact, a single instance of an object usual-

ly supports any number of connections to sinks in any number of separate clients. This is called multicasting.18 In

addition, any sink can be connected to any number of objects.

Chapter 11 covers the Connectable Object interfaces (IConnectionPoint and IConnectionPointContainer) in complete de-

tail.

17 OLE Controls use the Connectable Objects mechanisms extensively.
18 Note that this usage of the term multicasting may differ from what some readers are accustomed to. In some systems multicasting is used to

describe a connection-less broadcast. Connectable objects are obviously connection oriented.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 48 DRAFT: October 24, 1995

 All Rights Reserved

6 Persistent Storage

As mentioned in Chapter 1, the enhanced COM services define a number of storage-related interfaces, collectively

called Persistent Storage or Structured Storage. By definition of the term interface, these interfaces carry no imple-

mentation. They describe a way to create a ñfile system within a file,ò and they provide some extremely powerful

features for applications including incremental access, transactioning, and a sharable medium that can be used for

data exchange or for storing the persistent data of objects that know how to read and write such data themselves. The

following sections deal with the structure of storage and the other features.

.1 A File System Within A File

Years ago, before there were ñdisk operating systems,ò applications had to write persistent data directly to a disk

drive (or drum) by sending commands directly to the hardware disk controller. Those applications were responsible

for managing the absolute location of the data on the disk, making sure that it was not overwriting data that was

already there. This was not too much of a problem seeing as how most disks were under complete control of a single

application that took over the entire computer.

The advent of computer systems that could run more than one application brought about problems where all the

applications had to make sure they did not write over each otherôs data on the disk. It therefore became beneficial

that each adopted a standard of marking the disk sectors that were used and which ones were free. In time, these

standards became the ñdisk operating systemò which provided a ñfile system.ò Now, instead of dealing directly with

absolute disk sectors and so forth, applications simply told the file system to write blocks of data to the disk. Fur-

thermore, the file system allowed applications to create a hierarchy of information using directories which could

contain not only files but other sub-directories which in turn contained more files, more sub-directories, etc.

The file system provided a single level of indirection between applications and the disk, and the result was that every

application saw a file as a single contiguous stream of bytes on the disk. Underneath, however, the file system was

storing the file in dis-contiguous sectors according to some algorithm that optimized read and write time for each

file. The indirection provided from the file system freed applications from having to care about the absolute position

of data on a storage device.

Today, virtually all system APIs for file input and output provide applications with some way to write information

into a flat file that applications see as a single stream of bytes that can grow as large as necessary until the disk is

full. For a long time these APIs have been sufficient for applications to store their persistent information. Applica-

tions have made some incredible innovations in how they deal with a single stream of information to provide features

like incremental ñfastò saves.

However, a major feature of COM is interoperability, the basis for integration between applications. This integration

brings with it the need to have multiple applications write information to the same file on the underlying file system.

This is exactly the same problem that the computer industry faced years ago when multiple applications began to

share the same disk drive. The solution then was to create a file system to provide a level of indirection between an

application ñfileò and the underlying disk sectors.

Thus, the solution for the integration problem today is another level of indirection: a file system within a file. Instead

of requiring that a large contiguous sequence of bytes on the disk be manipulated through a single file handle with a

single seek pointer, COM defines how to treat a single file system entity as a structured collection of two types of

objectsðstorages and streamsðthat act like directories and files, respectively.

.2 Storage and Stream Objects

Within COMôs Persistent Storage definition there are two types of storage elements: storage objects and stream ob-

jects. These are objects generally implemented by the COM library itself; applications rarely, if ever, need to imple-

ment these storage elements themselves.19 These objects, like all others in COM, implement interfaces: IStream for

stream objects, IStorage for storage objects as detailed in Chapter 8.

A stream object is the conceptual equivalent of a single disk file as we understand disk files today. Streams are the

basic file-system component in which data lives, and each stream in itself has access rights and a single seek pointer.

Through its IStream interface stream can be told to read, write, seek, and perform a few other operations on its un-

derlying data. Streams are named by using a text string and can contain any internal structure you desire because

19 This specification recommends that the COM implementation on a given platform (Windows, Macintosh, etc.) includes a standard storage

implementation for use by all applications.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 49 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

they are simply a flat stream of bytes. In addition, the functions in the IStream interface map nearly one-to-one with

standard file-handle based functions such as those in the ANSI C run-time library.

A storage object is the conceptual equivalent of a directory. Each storage, like a directory, can contain any number of

sub-storages (sub-directories) and any number of streams (files). Furthermore, each storage has its own access rights.

The IStorage interface describes the capabilities of a storage object such as enumerate elements (dir), move, copy,

rename, create, destroy, and so forth. A storage object itself cannot store application-defined data except that it im-

plicitly stores the names of the elements (storages and streams) contained within it.

Storage and stream objects, when implemented by COM as a standard on a system, are sharable between processes.

This is a key feature that enables objects running in-process or out-of-process to have equal incremental access to

their on-disk storage. Since COM is loaded into each process separately, it must use some operating-system sup-

ported shared memory mechanisms to communicate between processes about opened elements and their access

modes.

.3 Application Design with Structured Storage

COMôs structured storage built out of storage and stream objects makes it much easier to design applications that by

their nature produce structured information. For example, consider a ñdiaryò program that allows a user to make

entries for any day of any month of any year. Entries are made in the form of some kind of object that itself manages

some information. Users wanting to write some text into the diary would store a text object; if they wanted to save a

scan of a newspaper clip they could use a bitmap objects, and so forth.

Without a powerful means to structure information of this kind, the diary application might be forced to manage

some hideous file structure with an overabundance of file position cross-reference pointers as shown in Figure 2-11.

There are many problems in trying to put structured information into a flat file. First, there is the sheer tedium of

managing all the cross-reference pointers in all the different structures of the file. Whenever a piece of information

grows or moves in the file, every cross-reference offset referring to that information must be updated as well. There-

fore even a small change in the size of one of the text objects or an addition of a day or month might precipitate

changes throughout the rest of the file to update seek offsets. While not only tedious to manage, the application will

have to spend enormous amounts of time moving information around in the file to make space for data that expands.

That, or the application can move the newly enlarged data to the end of the file and patch a few seek offsets, but that

introduces the whole problem of garbage collection, that is, managing the free space created in the middle of the file

to minimize waste as well as overall file size.

Day Header

...

Day Header

...

Text Object

Text

Bitmap Object

Format Info.

Bits

Drawing Object

Metafile

File Header

Offset to year

Offset to year

Year Header

Offset to month

Offset to month

Offest to month

Year Header

...

Month Header

Offset to day

Offset to day

Offset to day

Month Header

...

Month Header

...

Day Header

Offset to Text

Offset to Bitmap

Offset to Drawing

(continuation of file)

Figure 2-11: A flat-file structure for a diary application. This

sort of structure is difficult to manage.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 50 DRAFT: October 24, 1995

 All Rights Reserved

The problems are compounded even further with objects that are capable of reading and writing their own infor-

mation to storage. In the example here, the diary application would prefer to give each objects in itðtext, bitmap,

drawing, table, etc.ðits own piece of the file in which the object can write whatever the it wants, however much it

wants. The only practical way to do this with a single flat file is for the diary application to ask each object for a

memory copy of what the object would like to store, and then the diary would write that information into a place in

its own file. This is really the only way in which the diary could manage the location of all the information. Now

while this works reasonably well for small data, consider an object that wants to store a 10MB bitmap scan of a

true-color photographðexchanging that much data through memory is horribly inefficient. Furthermore, if the end

user wants to later make changes to that bitmap, the diary would have to load the bitmap in entirety from its file and

pass it back to the object. This is again extraordinarily inefficient.20

COMôs Persistent Storage technology solves these problems through the extra level of indirection of a file system

within a file. With COM, the diary application can create a structured hierarchy where the root file itself has

sub-storages for each year in the diary. Each year sub-storage has a sub-storage for each month, and each month has

a sub-storage for each day. Each day then would have yet another sub-storage or perhaps just a stream for each piece

of information that the user stores in that day.21 This configuration is illustrated in Figure 2-12.

Stream

Storage

Root (File)

Year...

File Header

Year
Year Header

Month...

Month...

Month

Month Header

Day...

Day...

Text Object

Text

Day

Day Header

Drawing Object

MetafileBitmap Object

Bits

Format Info

Figure 2-12: A structured storage scheme for a diary application. Every object that has

some content is given its own storage or stream element for its own exclusive use.

This structure solves the problem of expanding information in one of the objects: the object itself expands the

streams in its control and the COM implementation of storage figures out where to store all the information in the

stream. The diary application doesnôt have to lift a finger. Furthermore, the COM implementation automatically

manages unused space in the entire file, again, relieving the diary application of a great burden.

In this sort of storage scheme, the objects that manage the content in the diary always have direct incremental access

to their piece of storage. That is, when the object needs to store its data, it writes it directly into the diary file without

having to involve the diary application itself. The object can, if it wants to, write incremental changes to that storage,

thus leading to much better performance than the flat file scheme could possibly provide. If the end user wanted to

make changes to that information later on, the object can then incrementally read as little information as necessary

instead of requiring the diary to read all the information into memory first. Incremental access, a feature that has

traditionally been very hard to implement in applications, is now the default mode of operation. All of this leads to

much better performance.

20 This mechanism, in fact, was employed by compound documents in Microsoftôs OLE version 1.0. The problems describe here were some of
the major limitations of OLE 1.0 which provided much of the impetus for COMôs Persistent Storage technology.

21 The application would only create year, month, and day substorages for those days that had information in them, that is, the diary application
would create sparse storage for efficiency.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 51 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

.4 Naming Elements

Every storage and stream object in a structured file has a specific character name to identify it. These names are used

to tell IStorage functions what element in that storage to open, destroy, move, copy, rename, etc. Depending on

which component, client or object, actually defines and stores these names, different conventions and restrictions

apply.

Names of root storage objects are in fact names of files in the underlying file system. Thus, they obey the conven-

tions and restrictions that it imposes. Strings passed to storage-related functions which name files are passed on

un-interpreted and unchanged to the file system.

Names of elements contained within storage objects are managed by the implementation of the particular storage

object in question. All implementations of storage objects must at the least support element names that are 32 char-

acters in length; some implementations may if they wish choose to support longer names. Names are stored

case-preserving, but are compared case-insensitive.22 As a result, applications which define element names must

choose names which will work in either situation.

The names of elements inside an storage object must conform to certain conventions:

1. The two specific names ñ.ò and ñ..ò are reserved for future use.

2. Element names cannot contain any of the four characters ñ\ò, ñ/ò, ñ:ò, or ñ!ò.

In addition, the name space in a storage element is partitioned in to different areas of ownership. Different pieces of

code have the right to create elements in each area of the name space.

¶ The set of element names beginning with characters other than ó\0x01ô through ó\0x1Fô (that is, decimal 1

through decimal 31) are for use by the object whose data is stored in the IStorage. Conversely, the object must

not use element names beginning with these characters.

¶ Element names beginning with a ó\0x01ô and ó\0x02ô are for the exclusive use of COM and other system code built

on it such as OLE Documents.

¶ Element names beginning with a ó\0x03ô are for the exclusive use of the client which is managing the object. The

client can use this space as a place to persistently store any information it wishes to associate with the object

along with the rest of the storage for that object.

¶ Element names beginning with a ó\0x04ô are for the exclusive use of the COM structured storage implementa-

tion itself. They will be useful, for example, should that implementation support other interfaces in addition to

IStorage, and these interface need persistent state.

¶ Element names beginning with ó\0x05ô and ó\0x06ô are for the exclusive use of COM and other system code built

on it such as OLE Documents.

¶ All other names beginning with ó\0x07ô through ó\0x1Fô are reserved for future definition and use by the system.

In general, an elementôs name is not considered useful to an end-user. Therefore, if a client wants to store specific

user-readable names of objects, it usually uses some other mechanism. For example, the client may write its own

stream under one of its own storage elements that has the names of all the other objects within that same storage

element. Another method would be for the client to store a stream named ñ\0x03Nameò in each objectôs storage that

would contain that objectôs name. Since the stream name itself begins with ó\0x03ô the client owns that stream even

through the objects controls much of the rest of that storage element.

.5 Direct Access vs. Transacted Access

Storage and stream elements support two fundamentally different modes of access: direct mode and transacted mode.

Changes made while in direct mode are immediately and permanently made to the affected storage object. In trans-

acted mode, changes are buffered so that they may be saved (ñcommittedò) or reverted when modifications are com-

plete.

If an outermost level IStorage is used in transacted mode, then when it commits, a robust two-phase commit operation

is used to publish those changes to the underlying file on the file system. That is, great pains are taken are taken so as

not to loose the userôs data should an untimely crash occurs.

22 Case sensitivity is a locale-sensitive operation: some characters compare case-insenstive-equal in some locales and -not-equal in others. In an

IStorage implementation, the case-insenstive comparision is done with respect to the current locale in which the system is presently running.
This has implications on the use of IStorage names for those who wish to create globally portable documents.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 52 DRAFT: October 24, 1995

 All Rights Reserved

The need for transacted mode is best explained by an illustrative scenario. Imagine that a user has created a spread-

sheet which contains a sound clip object, and that the sound clip is an object that uses the new persistent storage

facilities provided in COM. Suppose the user opens the spreadsheet, opens the sound clip, makes some editing

changes, then closes the sound clip at which point the changes are updated in the spreadsheet storage set aside for the

sound clip. Now, at this instant, the user has a choice: save the spreadsheet or close the spreadsheet without saving.

Either way, the next time the user opens the spreadsheet, the sound clip had better be in the appropriate state. This

implies that at the instant before the save vs. close decision was made, both the old and the new versions of the sound

clip had to exist. Further, since large objects are precisely the ones that are expensive in time and space to copy, the

new version should exist as a set of differences from the old.

The central issue is whose responsibility it is to keep track of the two versions. The client (the spreadsheet in this

example) had the old version to begin with, so the question really boils down to how and when does the object

(sound clip) communicate the new version to the spreadsheet. Applications today are in general already designed to

keep edits separate from the persistent copy of an object until such time as the user does a save or update. Update

time is thus the earliest time at which the transfer should occur. The latest is immediately before the client saves

itself. The most appropriate time seems to be one of these two extremes; no intermediate time has any discernible

advantage.

COM specifies that this communication happens at the earlier time. When asked to update edits back to the client, an

object using the new persistence support will write any changes to its storage) exactly as if it were doing a save to its

own storage completely outside the client. It is the responsibility of the client to keep these changes separate from the

old version until it does a save (commit) or close (revert). Transacted mode on IStorage makes dealing with this

requirement easy and efficient.

The transaction on each storage is nested in the transaction of its parent storage. Think of the act of committing a

transaction on an IStorage instance as ñpublishing changes one more level outwards.ò Inner objects publish changes

to the transaction of the next object outwards; outermost objects publish changes permanently into the file system.

Letôs examine for a moment the implications of using instead the second option, where the object keeps all editing

changes to itself until it is known that the user wants to commit the client (save the file). This may happen many

minutes after the contained object was edited. COM must therefore allow for the possibility that in the interim time

period the user closed the server used to edit the object, since such servers may consume significant system re-

sources. To implement this second option, the server must presumably keep the changes to the old version around in

a set of temporary files (remember, these are potentially big objects). At the clientôs commit time, every server would

have to be restarted and asked to incorporate any changes back onto its persistent storage. This could be very time

consuming, and could significantly slow the save operation. It would also cause reliability concern in the userôs

mind: what if for some reason (such as memory resources) a server cannot be restarted? Further, even when the cli-

ent is closed without saving, servers have to be awakened to clean up their temporary files. Finally, if a object is

edited a second time before the client is committed, in this option its the client can only provide the old, original

storage, not the storage that has the first edits. Thus, the server would have to recognize on startup that some edits to

this object were lying around in the system. This is an awkward burden to place on servers: it amounts to requiring

that they all support the ability to do incremental auto-save with automatic recovery from crashes. In short, this ap-

proach would significantly and unacceptably complicate the responsibilities of the object implementors.

To that end, it makes the most sense that the standard COM implementation of the storage system support transac-

tioning through IStorage and possibly IStream.

.6 Browsing Elements

By its nature, COMôs structured storage separates applications from the exact layout of information within a given

file. Every element of information in that file is access using functions and interfaces implemented by COM. Be-

cause this implementation is central, a file generated by some application using this structure can be browsed by

some other piece of code, such as a system shell. In other words, any piece of code in the system can use COM to

browse the entire hierarchy of elements within any structured file simply by navigating with the IStorage interface

functions which provide directory-like services. If that piece of code also knows the format and the meaning of a

specific stream that has a certain name, it could also open that stream and make use of the information in it, without

having to run the application that wrote the file.

This is a powerful enabling technology for operating system shells that want to provide rich query tools to help end

users look for information on their machine or even on a network. To make it really happen requires standards for

certain stream names and the format of those streams such that the system shell can open the stream and execute

queries against that information. For example, consider what is possible if all applications created a stream called

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 53 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

ñSummary Informationò underneath the root storage element of the file. In this stream the application would write

information such as the author of the document, the create/modify/last saved time-stamps, title, subject, keywords,

comments, a thumbnail sketch of the first page, etc. Using this information the system shell could find any docu-

ments that a certain user write before a certain date or those that contained subject matter matched against a few

keywords. Once those documents are found, the shell can then extract the title of the document along with the

thumbnail sketch and give the user a very engaging display of the search results.

This all being said, in the general the actual utility of this capability is perhaps significantly less than what one might

first imagine. Suppose, for example, that I have a structured storage that contains some word processing document

whose semantics and persistent representation I am unaware of, but which contains some number of contained ob-

jects, perhaps the figures in the document, that I can identify by their being stored and tagged in contained

sub-storages. One might naively think that it would be reasonable to be able to walk in and browse the figures from

some system-provided generic browsing utility. This would indeed work from a technical point of view; however, it

is unlikely to be useable from a user interface perspective. The document may contain hundreds of figures, for ex-

ample, that the user created and thinks about not with a name, not with a number, but only in the relationship of a

particular figure to the rest of the documentôs information. With what user interface could one reasonably present

this list of objects to the user other than as some add-hoc and arbitrarily-ordered sequence? There is, for example,

no name associated with each object that one could use to leverage a file-system directory-browsing user interface

design. In general, the content of a document can only be reasonably be presented to a human being using a tool that

understands the semantics of the document content, and thus can show all of the information therein in its appropri-

ate context.

.7 Persistent Objects

Because COM allows an object to read and write itself to storage, there must be a way through which the client tells

objects to do so. The way is, of course, additional interfaces that form a storage contract between the client and ob-

jects. When a client wants to tell and object to deal with storage, it queries the object for one of the persis-

tence-related interfaces, as suits the context. The interfaces that objects can implement, in any combination, are de-

scribed below:

IPersistStorage Object can read and write its persistent state to a storage object. The client pro-

vides the object with an IStorage pointer through this interface. This is the only

IPersist* interface that includes semantics for incremental access.

IPersistStream Object can read and write its persistent state to a stream object. The client pro-

vides the object with an IStream pointer through this interface.

IPersistFile Object can read and write its persistent state to a file on the underlying system

directly. This interface does not involve IStorage or IStream unless the underlying

file is itself access through these interfaces, but the IPersistFile itself has no se-

mantics relating to such structures. The client simply provides the object with a

filename and orders to save or load; the object does whatever is necessary to ful-

fill the request.

These interfaces and the rules governing them are described in Chapter 12.

7 Persistent, Intelligent Names: Monikers

To set the context for why ñPersistent, Intelligent Namesò are an important technology in COM, think for a moment

about a standard, mundane file name. That file name refers to some collection of data that happens to be stored on

disk somewhere. The file name describes the somewhere. In that sense, the file name is really a name for a particular

ñobjectò of sorts where the object is defined by the data in the file.

The limitation is that a file name by itself is unintelligent; all the intelligence about what that filename means and

how it gets used, as well as how it is stored persistently if necessary, is contained in whatever application is the client

of that file name. The file name is nothing more than some piece of data in that client. This means that the client

must have specific code to handle file names. This normally isnôt seen as much of a problemðmost applications can

deal with files and have been doing so for a long time.

Now introduce some sort of name that describes a query in a database. The introduce others that describe a file and a

specific range of data within that file, such as a range of spreadsheet cells or a paragraph is a document. Introduce yet

more than identify a piece of code on the system somewhere that can execute some interesting operation. In a world

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 54 DRAFT: October 24, 1995

 All Rights Reserved

where clients have to know what a name means in order to use it, those clients end up having to write specific code

for each type of name causing that application to grow monolithically in size and complexity. This is one of the

problems that COM was created to solve.

In COM, therefore, the intelligence of how to work with a particular name is encapsulated inside the name itself,

where the name becomes an object that implements name-related interfaces. These objects are called monikers.23 A

moniker implementation provides an abstraction to some underlying connection (or ñbindingò) mechanism. Each

different moniker class (with a different CLSID) has its own semantics as to what sort of object or operation it can

refer to, which is entirely up to the moniker itself. A section below describes some typical types of monikers. While a

moniker class itself defines the operations necessary to locate some general type of object or perform some general

type of action, each individual moniker object (each instantiation) maintains its own name data that identifies some

other particular object or operation. The moniker class defines the functionality; a moniker object maintains the

parameters.

With monikers, clients always work with names through an interface, rather than directly manipulating the strings (or

whatever) themselves. This means that whenever a client wishes to perform any operation with a name, it calls some

code to do it instead of doing the work itself. This level of indirection means that the moniker can transparently pro-

vide a whole host of services, and that the client can seamlessly interoperate over time with various different moniker

implementations which implement these services in different ways.

.1 Moniker Objects

A moniker is simply an object that supports the IMoniker interface. IMoniker interface includes the IPersistStream inter-

face;24 thus, monikers can be saved to and loaded from streams. The persistent form of a moniker includes the data

comprising its name and the CLSID of its implementation which is used during the loading process. This allows new

kinds of monikers to be created transparently to clients.

The most basic operation in the IMoniker interface is that of binding to the object to which it points. The binding func-

tion in IMoniker takes as a parameter the interface identifier by which the client wishes to talk to the bound object,

runs whatever algorithm is necessary in order to locate the object, then returns a pointer of that interface type to the

client. The client can also ask to bind to the objectôs storage (for example, the IStorage containing the object) if de-

sired, instead of to the running object through a slightly different IMoniker function. As binding may be an expensive

and time-consuming process, a client can control how long it is willing to wait for the binding to complete. Binding

also takes place inside a specific ñbind contextò that is given to the moniker. Such a context enables the binding

process overall to be more efficient by avoiding repeated connections to the same object.

A moniker also supports an operation called ñreductionò through which it re-writes itself into another equivalent

moniker that will bind to the same object, but does so in a more efficient way. This capability is useful to enable the

construction of user-defined macros or aliases as new kinds of moniker classes (such that when reduced, the moniker

to which the macro evaluates is returned) and to enable construction of a kind of moniker which tracks data as it

moves about (such that when reduced, the new moniker contains a reference to the new location). Chapter 9 will

expand on the reduction concept.

Each moniker class can store arbitrary data its persistent representation, and can run arbitrary code at binding time.

The client therefore only knows each moniker by the presence of a persistent representation and whatever label the

client wishes to assign to each moniker. For example, a spreadsheet as a client may keep, from the userôs perspective,

a list of ñlinksò to other spreadsheets where, in fact, each link was an arbitrary label for a moniker (regardless of

whether the moniker is loaded or persistently on disk at the moment) where the moniker manages the real identity of

the linked data. When the spreadsheet wants to resolve a link for the user, it only has to ask the moniker to bind to

the object. After the binding is complete, the spreadsheet then has an interface pointer for the linked object and can

talk to it directlyðthe moniker falls out of the picture as its job is complete.

The label assigned to a moniker by a client does not have to be arbitrary. Monikers support the ability to produce a

ñdisplay nameò for whatever object they represent that is suitable to show to an end user. A moniker that maintains a

file name (such that it can find an application to load that file) would probably just use the file name directly as the

display name. Other monikers for things such as a query may want to provide a display name that is a little more

readable than some query languages.

23 The word ñmonikerò is fairly obscure synonym for ñnickname.ò
24 One of the few instances of inheritance from one major interface to another, which the IMoniker designer later decided was actually less pref-

erable to having a moniker implement IMoniker and IPersistStream separately. See the first footnote in Chapter 9.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 55 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

.2 Types of Monikers

As some of the examples above has hinted, monikers can have many types, or classes, depending on the information

they contain and the type of objects they can refer to. A moniker class is really defined by the information it persis-

tently maintains and the binding operation is uses on that information.

COM itself, however, only specifies one standard moniker called the generic composite moniker. The composite

moniker is special in two ways. First, its persistent data is completely composed of the persistent data of other moni-

kers, that is, a composite moniker is a collection of other monikers. Second, binding a composite moniker simply

tells the composite to bind each moniker it contains in sequence. Since the compositeôs behavior and persistent state

is defined by other monikers, it is a standard type of moniker that works identically on any host system; the compo-

site is generic because it has no knowledge of its pieces except that they are monikers. Chapter 9 described the ge-

neric composite in more detail.

So what other types of monikers can go in a composite? Virtually any other type (including other composite moni-

kers!). However, other types of monikers are not so generic and have more dependency on the underlying operating

system or the scenarios in which such a moniker is used.

For example, Microsoftôs OLE defines four other specific monikersðfile, item, anti, pointerðthat it uses specifical-

ly to help implement ñlinked objectsò in its compound document technology. A file moniker, for example, maintains

a file name as its persistent data and its binding process is one of locating an application that can load that file,

launching the application, and retrieving from it an IPersistFile interface through which the file moniker can ask the

application to load the file. Item monikers are used to describe smaller portions of a file that might have been loaded

with a file moniker, such as a specific sheet of a three-dimensional spreadsheet or a range of cells in that sheet. To

ñlinkò to a specific cell range in a specific sheet of a specific file, the single moniker used to describe the link is a

generic composite that is composed with a file moniker and two item monikers as illustrated in Figure 2-13. Each

moniker in the composite is one step in the path to the final source of the link.

C:\Q3RPT.DOC

File Moniker

SALESTBL

Item Moniker

R2C2:R7C4

Item Moniker

Moniker class

Display Name

Generic Composite Moniker

Figure 2-13: A composite moniker that is composed with a file moniker and two item monikers

to describe the source of a link which is a cell range in a specific sheet of a spreadsheet file.

More complete descriptions of the file, item, anti, and pointer monikers from OLE are provided in Chapter 9 as ex-

amples of how monikers can be used. But monikers can represent virtually any type of information and operation,

and are not limited to this basic set of OLE defined monikers.

.3 Connections and Reconnections

How does a client come by a moniker in the first place? In other words, how does a client establish a connection to

some object and obtain a moniker that describes that connection? The answer depends on the scenario involved but is

generally one of two ways. First, the source of the object may have created a moniker and made it available for con-

sumption through a data transfer mechanism such (in the workstation case) as a clipboard or perhaps a drag & drop

operation. Second, the client may have enough knowledge about a particular moniker class that it can synthesize a

moniker for some object using other known information such that the client can forget about that specific infor-

mation itself and thereafter deal only with monikers. So regardless of how a client obtains a moniker, it can simply

ask the moniker to bind to establish a connection to the object referred to by the moniker.

Binding a moniker does not always mean that the moniker must run the object itself. The object might already be

running within some appropriate scope (such as the current desktop) by the time the client wants to bind the moniker

to it. Therefore the moniker need only connect to that running object.

COM supports this scenario through two mechanisms. The first is the Running Object Table in which objects register

themselves and their monikers when they become running. This table is available to all monikers as they attempt to

bindðif a moniker sees that a matching moniker in the table, it can quickly connect to the already running object.

8 Uniform Data Transfer

Just as COM provides interfaces for dealing with storage and object naming, it also provides interfaces for exchang-

ing data between applications. So built on top of both COM and the Persistent Storage technology is Uniform Data

Transfer, which provides the functionality to represent all data transfers through a single implementation of a data

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 56 DRAFT: October 24, 1995

 All Rights Reserved

object. Data objects implement an interface called IDataObject which encompasses the standard operations of get/set

data and query/enumerate formats as well as functions through which a client of a data object can establish a notifi-

cation loop to detect data changes in the object. In addition, this technology enables use of richer descriptions of data

formats and the use of virtually any storage medium as the transfer medium.

.1 Isolation of Transfer Protocols

The ñUniformò in the name of this technology arose from the fact that the IDataObject interface separates all the

common exchange operations from what is called a transfer protocol. Existing protocols include facilities such as a

ñclipboardò or a ñdrag & dropò feature as well as compound documents as implemented in OLE. With Uniform Data

Transfer, all protocols are concerned only with exchanging a pointer to an IDataObject interface. The source of the

dataðthe serverðneed only implement one data object which is usable in any exchange protocol and thatôs it. The

consumerðthe clientðneed only implement one piece of code to request data from a data object once it receives an

IDataObject pointer from any protocol. Once the pointer exchange has occurred, both sides deal with data exchange in

a uniform fashion, through IDataObject.

This uniformity not only reduces the code necessary to source or consume data, but also greatly simplifies the code

needed to work with the protocol itself. Before COM was first implemented in OLE 2, each transfer protocol availa-

ble on Microsoft Windows had its own set of functions that tightly bound the protocol to the act of requesting data,

and so programmers had to implement specific code to handle each different protocol and exchange procedure. Now

that the exchange functionality is separated from the protocol, dealing with each protocol requires only a minimum

amount of code which is absolutely necessary for the semantics of that protocol.

While of course extremely useful in the context of OLE Documents, Uniform Data Transfer is a generic service with

applications far beyond OLE Documents.

.2 Data Formats and Transfer Mediums

Before Uniform Data Transfer, virtually all standard protocols for data transfer were quite weak at describing the

data being transferred and usually required the exchange to occur through global memory. This was especially true

on Microsoft Windows: the format was described by a single 16-bit ñclipboard formatò and the medium was always

global memory.

The problem with the ñclipboard formatò is that it can only describe the structure of the data, that is, identify the

layout of the bits. For example, the format CF_TEXT describes ASCII text. CF_BITMAP describes a device-dependent

bitmap of so many colors and such and such dimensions, but was incapable of describing the actual device it depends

upon. Furthermore, none of these formats gave any indication of what was actually in the data such as the amount of

detailðwhether a bitmap or metafile contained the full image or just a thumbnail sketch.

The problem with always using global memory as a transfer medium is apparent when large amounts of data are

exchanged. Unless you have a machine with an obnoxious amount of memory, an exchange of, say, a 20MB scanned

true-color bitmap through global memory is going to cause considerable swapping to virtual memory on the disk.

Restricting exchanges to global memory means that no application can choose to exchange data on disk when it will

usually reside on disk even when being manipulated and will usually use virtual memory on disk anyway. It would

be much more efficient to allow the source of that data to indicate that the exchange happens on disk in the first place

instead of forcing 20MB of data through a virtual-memory bottleneck to just have it end up on disk once again.

Further, latency of the data transfer is sometimes an issue, particularly in network situations. One often needs or

wants to start processing the beginning of a large set of data before the end the data set has even reached the destina-

tion machine. To accomplish this, some abstraction on the medium by which the data is transferred is needed.

To solve these problems, COM defines two new data structures: FORMATETC and STGMEDIUM. FORMATETC is a

better clipboard format, for the structure not only contains a clipboard format but also contains a device description,

a detail description (full content, thumbnail sketch, iconic, and óas printedô), and a flag indicating what storage de-

vice is used for a particular rendering. Two FORMATETC structures that differ only by storage medium are, for all

intents and purposes, two different formats. STGMEDIUM is then the better global memory handle which contains a

flag indicating the medium as well as a pointer or handle or whatever is necessary to access that actual medium and

get at the data. Two STGMEDIUM structures may indicate different mediums and have different references to data, but

those mediums can easily contain the exact same data.

So FORMATETC is what a consumer (client) uses to indicate the type of data it wants from a data source (object) and

is used by the source to describe what formats it can provide. FORMATETC can describe virtually any data, including

other objects such a monikers. A client can ask a data object for an enumeration of its formats by requesting the data

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 57 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

objectôs IEnumFORMATETC interface. Instead of an object blandly stating that it has ñtext and a bitmapò it can say it

has ñA device-independent string of text that is stored in global memoryò and ña thumbnail sketch bitmap rendered

for a 100dpi dot-matrix printer which is stored in an IStorage object.ò This ability to tightly describe data will, in time,

result in higher quality printer and screen output as well as more efficiency in data browsing where a thumbnail

sketch is much faster to retrieve and display than a full detail rendering.

STGMEDIUM means that data sources and consumers can now choose to use the most efficient exchange medium on a

per-rendering basis. If the data is so big that it should be kept on disk, the data source can indicate a disk-based me-

dium in itôs preferred format, only using global memory as a backup if thatôs all the consumer understands. This has

the benefit of using the best medium for exchanges as the default, thereby improving overall performance of data

exchange between applicationsðif some data is already on disk, it does not even have to be loaded in order to send it

to a consumer who doesnôt even have to load it upon receipt. At worst, COMôs data exchange mechanisms would be

as good as anything available today where all transfers restricted to global memory. At best, data exchanges can be

effectively instantaneous even for large data.

Note that two potential storage mediums that can be used in data exchange are storage objects and stream objects.

Therefore Uniform Data Transfer as a technology itself builds upon the Persistent Storage technology as well as the

basic COM foundation. Again, this enables each piece of code in an application to be leveraged elsewhere.

.3 Data Selection

A data object can vary to a number of degrees as to what exact data it can exchange through the IDataObject interface.

Some data objects, such as those representing the clipboard or those used in a drag & drop operation, statically rep-

resent a specific selection of data in the source, such as a range of cells in a spreadsheet, a certain portion of a bit-

map, or a certain amount of text. For the life of such static data objects, the data underneath them does not change.

Other types of data objects, however, may support the ability to dynamically change their data set. This ability,

however, is not represented through the IDataObject interface itself. In other words, the data object has to implement

some other interface to support dynamic data selection. An example of such objects are those that support OLE for

Real-Time Market Data (WOSA/XRT) specification.25 OLE for Real-Time Market Data uses a data object and the

IDataObject interface for exchange of data, but use the IDispatch interface from OLE Automation to allow consumers

of the data to dynamically instruct the data object to change its working set. In other words, the OLE Automation

technology (built on COM but not part of COM itself) allows the consumer to identify the specific market issues and

the information on those issues (high, low, volume, etc.) that it wants to obtain from the data object. In response, the

data object internally determines where to retrieve that data and how to watch for changes in it. The data object then

notifies the consumer of changes in the data through COMôs Notification mechanism.

.4 Notification

Consumers of data from an external source might be interested in knowing when data in that source changes. This

requires some mechanism through which a data object itself asynchronously notifies a client connected to it of just

such an event at which point a client can remember to ask for an updated copy of the data when it later needs such an

update.

COM handles notifications of this kind through an object called an advise sink which implements an interface called

IAdviseSink.26 This sink is a body that absorbs asynchronous notifications from a data source. The advise sink object

itself, and the IAdviseSink interface is implemented by the consumer of data which then hands an IAdviseSink pointer to

the data object in question. When the data object detects a change, it then calls a function in IAdviseSink to notify the

consumer as illustrated in Figure 2-14.

25 OLE for Real-Time Market Data was formerly called the ñWOSA Extensions for Real Time Market Dataò. More information on this and

other industry specific extensions to OLE is available from Microsoft.
26 Astute readers will wonder why Uniform Data Transfer is defined using the Connectable Objects interfaced described previously. The reason

is simple: UDT was designed as part of the original OLE 2.0 specification in 1991, and Connectable Objects were not introduced until the re-
lease of the OLE Controls specification in 1993.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 58 DRAFT: October 24, 1995

 All Rights Reserved

Advise

Sink

Consumer
Data

Object

Data Source

Call to establish

notification passes

IAdviseSink

IDataObject

IAdviseSink

Data source

notifies IAdviseSink

on data changes
Figure 2-14: A consumer of data implements an object with the IAdviseSink interface

through which data objects notify that consumer of data changes.

This is the most frequent situation where a client of one object, in this case the consumer, will itself implement an

object to which the data object acts as a client itself. Notice that there are no circular reference counts here: the con-

sumer object and the advise sink have different COM object identities, and thus separate reference counts. When the

data object needs to notify the consumer, it simply calls the appropriate member function of IAdviseSink.

So IAdviseSink is more of a central collection of notifications of interest to a number of other interfaces and scenarios

outside of IDataObject and data exchange. It contains, for example, a function for the event of a óviewô change, that is,

when a particular view of data changes without a change in the underlying data. In addition, it contains functions for

knowing when an object has saved itself, closed, or been renamed. All of these other notifications are of particular

use in compound document scenarios and are used in OLE, but not COM proper. Chapter 14 will describe these

functions but the mechanisms by which they are called are not part of COM and are not covered in this specification.

Interested readers should refer to the OLE 2 Specifications from Microsoft.

Finally, data objects can establish notifications with multiple advise sinks. COM provides some assistance for data

objects to manage an arbitrary number of IAdviseSink pointers through which the data object can pass each pointer to

COM and then tell COM when to send notifications. COM in turn notifies all the advise sinks it maintains on behalf

of the data object.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 59 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

3. Objects And Interfaces

This chapter describes in detail the heart of COM: the notion of interfaces and their relationships to the objects on

which they are implemented. More specifically, this chapter covers what an interface is (technically), interface call-

ing conventions, object and interface identity, the fundamental interface called IUnknown, and COMôs error reporting

mechanism. In addition, this chapter describes how an object implements one or more interfaces as well as a special

type of object called the ñenumeratorò which comes up in various contexts in COM.

As described in Chapters 1 and 2, the COM Library provides the fundamental implementation locator services to

clients and provides all the necessary glue to help clients communicate transparently with object regardless of where

those objects execute: in-process, out-of-process, or on a different machine entirely. All servers expose their objectôs

services through interfaces, and COM provides implementations of the ñproxyò and ñstubò objects that make com-

munication possible between processes and machines where RPC is necessary.

However, as weôll see in this chapter and those that follow, the COM Library also provides fundamental API func-

tions for both clients and servers or, in general, any piece of code that uses COM, application or not. These API

functions will be described in the context of where other applications or DLLs use them. A COM implementor read-

ing this document will find the specifications for each function offset clearly from the rest of the text. These func-

tions are implemented in the COM Library to standardize the parts of this specification that applications should not

have to implement nor would want to implement. Through the services of the COM Library, all clients can make use

of all objects in all servers, and all servers can expose their objects to all clients. Only by having a standard is this

possible, and the COM Library enforces that standard by doing most of the hard work.

Not all the COM Library functions are truly fundamental. Some are just convenient wrappers to common sequences

of other calls, sometimes called ñhelper functions.ò Others exist simply to maintain global lists for the sake of all

applications. Others just provide a solid implementation of functions that could be implemented in every application,

but would be tedious and wasteful to do so.

1 Interfaces

An interface, in the COM definition, is a contract between the user, or client, of some object and the object itself. It is

a promise on the part of the object to provide a certain level of service, of functionality, to that client. Chapters 1 and

2 have already explained why interfaces are important COM and the whole idea of an object model. This chapter will

now fill out the definition of an interface on the technical side.

.1 The Interface Binary Standard

Technically speaking, an interface is some data structure that sits between the clientôs code and the objectôs imple-

mentation through which the client requests the objectôs services. The interface in this sense is nothing more than a

set of member functions that the client can call to access that object implementation. Those member functions are

exposed outside the object implementor application such that clients, local or remote, can call those functions.

The client maintains a pointer to the interface which is, in actuality, a pointer to a pointer to an array of pointers to

the objectôs implementations of the interface member functions. Thatôs a lot of pointers; to clarify matters, the struc-

ture is illustrated in Figure 3-1.

pointer

Interface Function Table

Interface Pointer Pointer to Function1

Object Implementation

of interface functions
Pointer to Function2

Pointer to Function3

...

Figure 3-1: The interface structure: a client has a pointer to an interface which is

a pointer to a pointer to an array (table) of pointers to the objectôs implementation.

By convention the pointer to the interface function table is called the pVtbl pointer. The table itself is generally re-

ferred to with the name vtbl for ñvirtual function table.ò

On a given implementation platform, a given method in a given interface (a particular IID, that is) has a fixed calling

convention; this is decoupled from the implementation of the interface. In principle, this decision can be made on a

method by method basis, though in practice on a given platform virtually all methods in all interfaces use the same

calling convention. On Microsoftôs 16-bit Windows platform, this default is the __far __cdecl calling convention; on

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 60 DRAFT: October 24, 1995

 All Rights Reserved

Win32 platforms, the __stdcall calling convention is the default for methods which do not take a variable number of

arguments, and __cdecl is used for those that do.

In contrast, just for note, COM API functions (not interface members) use the standard host system-call calling con-

vention, which on both Microsoft Win16 and Win32 is the __far __pascal sequence.

Finally, and quite significantly, all strings passed through all COM interfaces (and, at least on Microsoft platforms,

all COM APIs) are Unicode strings. There simply is no other reasonable way to get interoperable objects in the face

of (i) location transparency, and (ii) a high-efficiency object architecture that doesnôt in all cases intervene sys-

tem-provided code between client and server. Further, this burden is in practice not large.

When calling member functions, the caller must include an argument which is the pointer to the object instance it-

self. This is automatically provided in C++ compilers and completely hidden from the caller. The Microsoft Object

Mapping27 specifies that this pointer is pushed very last, immediately before the return address. The location of this

pointer is the reason that the pIInterface pointer appears at the beginning of the argument list of the equivalent C func-

tion prototype: it means that the layout in the stack of the parameters to the C function prototype is exactly that ex-

pected by the member function implemented in C++, and so no re-ordering is required.

Usually the pointer to the interface itself is the pointer to the entire object structure (state variables, or whatever) and

that structure immediately follows28 the pVtbl pointer memory as shown in Figure 3-2.

lpVtbl

Interface Function Table

Interface Pointer Pointer to Function1

Object Implementation

of interface functions
Pointer to Function2

Pointer to Function3

...

Object

State

Data

Figure 3-2: Convention places object data following the pointer

to the interface function table.

Since the pVtbl is received as the this pointer in the interface function, the implementor of that function knows which

object is being calledðan object is, after all, some structure and functions to manipulate that structure, and the inter-

face definition here supplies both.

In any case, this ñvtblò structure is called a binary standard because on the binary level, the structure is completely

determined by the particular interface being used and the platform on which it is being invoked. It is independent of

the programming language or tool used to create it. In other words, a program can be written in C to generate this

structure to match what C++ does automatically. For more details, see the section ñC vs. C++ò below. You could

even create this structure in assembly if so inclined. Since compilers for other languages eventually reduce source

code to assembly (as is the compiler itself) it is really a matter for compiler vendors to support this structure for lan-

guages such as Pascal, COBOL, Smalltalk, etc. Thus COM clients, objects, and servers can be written in any lan-

guages with appropriate compiler support.

Note that it is technically legal for the binary calling conventions for a given interface to vary according the particu-

lar implementation platform in question, though this flexibility should be exercised by COM system implementors

only with very careful attention to source portability issues. It is the case, for example, that on the Macintosh, the

pVtbl pointer does not point to the first function in the vtbl, but rather to a dummy pointer slot (which is ignored) im-

mediately before the first function; all the function pointers are thus offset by an index of one in the vtbl.

An interface implementor is free to use the memory before and beyond the ñas-specified-by-the-standardò vtbl for

whatever purpose he may wish; others cannot assume anything about such memory.

.2 Interface Definition and Identity

Every interface has a name that serves as the programmatic compile-time type in code that uses that interface (either

as a client or as an object implementor). The convention is to name each interface with a capital ñIò followed by

some descriptive label that indicates what functionality the interface encompasses. For example, IUnknown is the label

of the interface that represents the functionality of an object when all else about that object is unknown.

27 The ñMicrosoft Object Mappingò is an open specification describing the detailed layout of C++ objects. It is supported by the MS C/C++

compiler, as well as C++ compilers from other vendors including Borland, Symantec, Watcom, , and others. This is also the location of the this

pointer as placed by CFront when using the traditional right-to-left __cdecl calling sequence. Thus, we achieve a large degree of interoperabil-
ity.

28 Usually this data follows the pVtbl pointer, but this is not required. It is perfectly legal for object-specific data to precede the vtbl pointer, and
this in fact will be common with many C++ compilers.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 61 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

These programmatic types are defined in header files provided by the designer of the interface through use of the

Interface Description Language (IDL, see next section). For C++, an interface is defined as an abstract base, that is, a

structure containing nothing but ñpure virtualò member functions. This specification uses C++ notation to express

the declaration of an interface. For example, the IUnknown interface is declared as:

interface IUnknown

 {

 virtual HRESULT QueryInterface(IID& iid, void** ppv) =0;

 virtual ULONG AddRef(void) =0;

 virtual ULONG Release(void) =0;

 };

where ñvirtualò and ñ=0ò describe the attribute of a ñpure virtualò function and where the interface keyword is defined

as:

#define interface struct

The programmatic name and definition of an interface defines a type such that an application can declare a pointer to

an interface using standard C++ syntax as in IUnknown *.

In addition, this specification as a notation makes some use of the C++ reference mechanism in parameter passing,

for example:

QueryInterface(const IID& iid, void**ppv);

Usually ñconst <type>&ò is written as ñREF<type>ò as in REFIID for convenience. As you might expect, this exam-

ple would appear in a C version of the interface as a parameter of type:

const IID * const

Input parameters passed by reference will themselves be const, as shown here. In-out or out- parameters will not.

The use of the interface keyword is more a documentation technique than any requirement for implementation. An

interface, as a binary standard, is definable in any programming language as shown in the previous section. This

specificationôs use of C++ syntax is just a convenience.29 Also, for ease of reading, this specification generally omits

parameter types in code fragments such as this but does document those parameters and types fully with each mem-

ber function. Types do, of course, appear in header files with interfaces.

It is very important to note that the programmatic name for an interface is only a compile-time type used in applica-

tion source code. Each interface must also have a run-time identifier. This identifier enables a caller to query (via

QueryInterface) an object for a desired interface. Interface identifiers are GUIDs, that is, globally-unique 16 byte values,

of type IID. The person who defines the interface allocates and assigns the IID as with any other GUID, and he informs

others of his choice at the same time he informs them of the interface member functions, semantics, etc. Use of a

GUID for this purpose guarantees that the IID will be unique in all programs, on all machines, for all time, the run-time

identifier for a given interface will in fact have the same 16 byte value.

Programmers who define interfaces convey the interface identifier to implementors or clients of that interface along

with the other information about the interface (in the form of header files, accompanying semantic documentation,

etc.). To make application source code independent of the representation of particular interface identifiers, it is

standard practice that the header file defines a constant for each IID where the symbol is the name of the interface

prefixed with ñIID_ò such that the name can be derived algorithmically. For example, the interface IUnknown has an

identifier called IID_IUnknown.

For brevity in this specification, this definition will not be repeated with each interface, though of course it is present

in the COM implementation.

.3 Defining Interfaces: IDL

The Interface Description Language (IDL) is based on the Open Software Foundation (OSF) Distributed Computing

Environment (DCE) specification for describing interfaces, operations, and attributes to define remote procedure

calls. COM extends the IDL to support distributed objects.

A designer can define a new custom interface by writing an interface definition file. The interface definition file uses

the IDL to describe data types and member functions of an interface. The interface definition file contains the infor-

mation that defines the actual contract between the client application and server object. The interface contract speci-

fies three things:

¶ Language bindingðdefines the programming model exposed to the application program using a particular pro-

gramming language.

29 And, indeed, this syntax will at times be somewhat abused.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 62 DRAFT: October 24, 1995

 All Rights Reserved

¶ Application binary interfaceðspecifies how consumers and providers of the interface interoperate on a particu-

lar target platform.

¶ Network interfaceðdefines how client applications access remote server objects via the network.

After completing the interface definition file, the programmer runs the IDL compiler to generate the interface header

and the source code necessary to build the interface proxy and interface stub that the interface definition file de-

scribes. The interface header file is made available so client applications can use the interface. The interface proxy

and interface stub are used to construct the proxy and stub DLLs. The DLL containing the interface proxy must be

distributed with all client applications that use the new interface. The DLL containing the interface stub must be

distributed with all server objects that provide the new interface.

It is important to note that the IDL is a tool that makes the job of defining interfaces easier for the programmer, and

is one of possibly many such tools. It is not the key to COM interoperability. COM compliance does not require that

the IDL compiler be used. However, as IDL is broadly understood and used, it provides a convenient means by

which interface specifications can be conveyed to other programmers.

.4 C vs. C++ vs. ...

This specification documents COM interfaces using C++ syntax as a notation but (again) does not mean COM re-

quires that programmers use C++, or any other particular language. COM is based on a binary interoperability

standard, rather than a language interoperability standard. Any language supporting ñstructureò or ñrecordò types

containing double-indirected access to a table of function pointers is suitable.

However, this is not to say all languages are created equal. It is certainly true that since the binary vtbl standard is

exactly what most C++ compilers generate on PC and many RISC platforms, C++ is a convenient language to use

over a language such as C.

That being said, COM can declare interface declarations for both C++ and C (and for other languages if the COM

implementor desires). The C++ definition of an interface, which in general is of the form:

interface ISomeInterface

 {

 virtual RET_T MemberFunction(ARG1_T arg1, ARG2_T arg2 /*, etc */);

 [Other member functions]

 ...

 };

then the corresponding C declaration of that interface looks like

typedef struct ISomeInterface

 {

 ISomeInterfaceVtbl * pVtbl;

 } ISomeInterface;

typedef struct ISomeInterfaceVtbl ISomeInterfaceVtbl;

struct ISomeInterfaceVtbl

 {

 RET_T (*MemberFunction)(ISomeInterface * this, ARG1_T arg1,

 ARG2_T arg2 /*, etc */);

 [Other member functions]

 } ;

This example also illustrates the algorithm for determining the signature of C form of an interface function given the

corresponding C++ form of the interface function:

¶ Use the same argument list as that of the member function, but add an initial parameter which is the pointer to

the interface. This initial parameter is a pointer to a C type of the same name as the interface.

¶ Define a structure type which is a table of function pointers corresponding to the vtbl layout of the interface.

The name of this structure type should be the name of the interface followed by ñVtbl.ò Members in this struc-

ture have the same names as the member functions of the interface.

The C form of interfaces, when instantiated, generates exactly the same binary structure as a C++ interface does

when some C++ class inherits the function signatures (but no implementation) from an interface and overrides each

virtual function.

These structures show why C++ is more convenient for the object implementor because C++ will automatically

generate the vtbl and the object structure pointing to it in the course of instantiating an object. A C object imple-

mentor must define and object structure with the pVtbl field first, explicitly allocate both object structure and interface

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 63 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Vtbl structure, explicitly fill in the fields of the Vtbl structure, and explicitly point the pVtbl field in the object structure

to the Vtbl structure. Filling the Vtbl structure need only occur once in an application which then simplifies later object

allocations. In any case, once the C program has done this explicit work the binary structure is indistinguishable from

what C++ would generate.

On the client side of the picture there is also a small difference between using C and C++. Suppose the client appli-

cation has a pointer to an ISomeInterface on some object in the variable psome. If the client is compiled using C++,

then the following line of code would call a member function in the interface:

psome->MemberFunction(arg1, arg2, /* other parameters */);

A C++ compiler, upon noting that the type of psome is an ISomeInterface * will know to actually perform the double

indirection through the hidden pVtbl pointer and will remember to push the psome pointer itself on the stack so the

implementation of MemberFunction knows which object to work with. This is, in fact, what C++ compilers do for any

member function call; C++ programmers just never see it.

What C++ actually does is be expressed in C as follows:

psome->lpVtbl->MemberFunction(psome, arg1, arg2, /* other parameters */);

This is, in fact, how a client written in C would make the same call. These two lines of code show why C++ is more

convenientðthere is simply less typing and therefore fewer chances to make mistakes. The resulting source code is

somewhat cleaner as well. The key point to remember, however, is that how the client calls an interface member

depends solely on the language used to implement the client and is completely unrelated to the language used to

implement the object. The code shown above to call an interface function is the code necessary to work with the

interface binary standard and not the object itself.

.5 Remoting Magic Through Vtbls

The double indirection of the vtbl structure has an additional, indeed enormous, benefit: the pointers in the table of

function pointers do not need to point directly to the real implementation in the real object. This is the heart of Loca-

tion Transparency.

It is true that in the in-process server case, where the object is loaded directly into the client process, the function

pointers in the table are, in fact, the actual pointers to the actual implementation. So a function call from the client to

an interface member directly transfers execution control to the interface member function.

However, this cannot possibly work for local, let alone remote, object, because pointers to memory are absolutely not

sharable between processes. What must still happen to achieve transparency is that the client continues to call inter-

face member functions as if it were calling the actual implementation. In other words, the client uniformly transfers

control to some objectôs member function by making the call.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 64 DRAFT: October 24, 1995

 All Rights Reserved

In-Process

Object

Client

Application

Local

Object

Proxy

Remote

Object

Proxy

In-Process Server

COM

Client Process

RPC

RPC

Local

Object

Local Server

Stub

COM

Local Server Process

Remote

Object

Remote Server

Stub

COM

Remote Server Process

Remote Machine

Figure 3-3: A client always calls interface members in some in-process object. If

the actual object is local or remote, the call is made to a proxy object which then

makes a remote procedure call to the actual object.

So what member function actually executes? The answer is that the interface member called is implemented by a

proxy object that is always an in-process object that acts on behalf of the object being called. This proxy object

knows that the actual object is running in a local or remote server and so it must somehow make a remote procedure

call, through a standard RPC mechanism, to that object as shown in Figure 3-3.

The proxy object packages up the function parameters in some data packets and generates an RPC call to the local or

remote object. That packet is picked up by a stub object in the serverôs process, on the local or a remote machine,

which unpacks the parameters and makes the call to the real implementation of the member function. When that

function returns, the stub packages up any out-parameters and the return value, sends it back to the proxy, which

unpacks them and returns them to the original client. For exact details on how the proxy-stub and RPC mechanisms

work, see Chapter 7.

The bottom line is that client and server always talk to each other as if everything was in-process. All calls from the

client and all calls to the server do at some point, in fact, happen in-process. But because the vtbl structure allows

some agent, like COM, to intercept all function calls and all returns from functions, that agent can redirect those calls

to an RPC call as necessary. All of this is completely transparent to the client and server, hence Location Transpar-

ency.30

2 Globally Unique Identifiers

As mentioned earlier in this document, the GUID, from which are also obtained CLSID, IIDs, and any other needed

unique identifier, is a 128-bit, or 16-byte, value. The term GUID as used in this specification is completely synony-

mous and interchangeable with the term ñUUIDò as used by the DCE RPC architecture; they are indeed one and the

same notion. In binary terms, a GUID is a data structure defined as follows, where DWORD is 32-bits, WORD is

16-bits, and BYTE is 8-bits:

typedef struct GUID {

 DWORD Data1;

 WORD Data2;

 WORD Data3;

 BYTE Data4[8];

 } GUID;

30 Of course, if a client timed the call it might be able to discern a performance penalty if it had both in-process and out-of-process objects to

compare.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 65 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

This structure provides applications with some way of addressing the parts of a GUID for debugging purposes, if

necessary. This information is also needed when GUIDs are transmitted between machines of different byte orders.

For the most part, applications never manipulate GUIDs directlyðthey are almost always manipulated either as a

constant, such as with interface identifiers, or as a variable of which the absolute value is unimportant. For example,

a client might enumerate all object classes registered on the system and display a list of those classes to an end user.

That user selects a class from the list which the client then maps to an absolute CLSID value. The client does not

care what that value isðit simply knows that it uniquely identifies the object that the user selected.

The GUID design allows for coexistence of several different allocation technologies, but the one by far most com-

monly used incorporates a 48-bit machine unique identifier together with the current UTC time and some persistent

backing store to guard against retrograde clock motion. It is in theory capable of allocating GUIDs at a rate of

10,000,000 per second per machine for the next 3240 years, enough for most purposes.

For further information regarding GUID allocation technologies, see pp585-592 of [CAE RPC].31

3 The IUnknown Interface

This specification has already mentioned the IUnknown interface many times. It is the fundamental interface in COM

that contains basic operations of not only all objects, but all interfaces as well: reference counting and QueryInterface.

All interfaces in COM are polymorphic with IUnknown, that is, if you look at the first three functions in any interface

you see QueryInterface, AddRef, and Release. In other words, IUnknown is base interface from which all other interfaces

inherit.

Any single object usually only requires a single implementation of the IUnknown member functions. This means that

by virtue of implementing any interface on an object you completely implement the IUnknown functions. You do not

generally need to explicitly inherit from nor implement IUnknown as its own interface: when queried for it, simply

typecast another interface pointer into an IUnknown* which is entirely legal with polymorphism.

In some specific situations, more notably in creating an object that supports aggregation, you may need to implement

one set of IUnknown functions for all interfaces as well as a stand-alone IUnknown interface. The reasons and tech-

niques for this are described in the ñObject Reusabilityò section of Chapter 6.

In any case, any object implementor will implement IUnknown functions, and we are now in a position to look at them

in their precise terms.

.1 IUnknown Interface

IUnknown supports the capability of getting to other interfaces on the same object through QueryInterface. In addition, it

supports the management of the existence of the interface instance though AddRef and Release. The following is the

definition of IUnknown using the IDL notation; for details on the syntax of IDL see Chapter 15.32

[

 object,

 uuid(00000000-0000-0000-C000-000000000046),

 pointer_default(unique)

]

interface IUnknown

{

 HRESULT QueryInterface([in] REFIID iid, [out] void **ppv) ;

 ULONG AddRef(void) ;

 ULONG Release(void);

}

.1 IUnknown::QueryInterface

HRESULT IUnknown::QueryInterface(iid, ppv)

Return a pointer within this object instance that implements the indicated interface. Answer NULL if the receiver does

not contain an implementation of the interface.

31 Though be aware that the use of the term GUID on page 587 is regrettably not the same as its usage in this specification. In this specification,

the term GUID is used to refer to all identifiers that are ñinteroperableò with UUIDs as defined on p586; p587 uses the term to refer to one spe-

cific central-authority allocation scheme. Apologies to those who may be confused by this state of affairs.
32 Throughout this document IDL notation is used to precisely describe interfaces and other types. The actual IDL files contain additional IDL

specifies that are used by the IDL compiler to optimize the generation of marshaling code, but have no bearing on the actual interface con-
tract.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 66 DRAFT: October 24, 1995

 All Rights Reserved

It is required that any query for the specific interface IUnknown33 always returns the same actual pointer value, no

matter through which interface derived from IUnknown it is called. This enables the following identity test algorithm

to determine whether two pointers in fact point to the same object: call QueryInterface(IID_IUnknown, ...) on both and

compare the results.

In contrast, queries for interfaces other than IUnknown are not required to return the same actual pointer value each

time a QueryInterface returning one of them is called. This, among other things, enables sophisticated object imple-

mentors to free individual interfaces on their objects when they are not being used, recreating them on demand (ref-

erence counting is a per-interface notion, as is explained further below). This requirement is the basis for what is

called COM identity.

It is required that the set of interfaces accessible on an object via QueryInterface be static, not dynamic, in the follow-

ing precise sense.34 Suppose we have a pointer to an interface

ISomeInterface * psome = (some function returning an ISomeInterface *);

where ISomeInterface derives from IUnknown. Suppose further that the following operation is attempted:

IOtherInterface * pother;

HRESULT hr;

hr=psome->QueryInterface(IID_IOtherInterface, &pother); //line 4

Then, the following must be true:

¶ If hr==S_OK, then if the QueryInterface in ñline 4ò is attempted a second time from the same psome pointer, then

S_OK must be answered again. This is independent of whether or not pother->Release was called in the interim. In

short, if you can get to a pointer once, you can get to it again.

¶ If hr==E_NOINTERFACE, then if the QueryInterface in line 4 is attempted a second time from the same psome point-

er, then E_NOINTERFACE must be answered again. In short, if you didnôt get it the first time, then you wonôt get

it later.

Furthermore, QueryInterface must be reflexive, symmetric, and transitive with respect to the set of interfaces that are

accessible. That is, given the above definitions, then we have the following:

Symmetric: psome->QueryInterface(IID_ISomeInterface, ...) must succeed

Reflexive: If in line 4, pother was successfully obtained, then

pother->QueryInterface(IID_ISomeInterface, ...)

must succeed.

Transitive: If in line 4, pother was successfully obtained, and we do

IYetAnother * pyet;

pother->QueryInterface(IID_IYetAnother, &pyet); //Line 7

and pyet is successfully obtained in line 7, then

pyet->QueryInterface(IID_ISomeInterface, ...)

must succeed.

Here, ñmust succeedò means ñmust succeed barring catastrophic failures.ò As was mentioned above, it is specifically

not the case that two QueryInterface calls on the same pointer asking for the same interface must succeed and return

exactly the same pointer value (except in the IUnknown case as described previously).

Argument Type Description

iid REFIID The interface identifier desired.

ppv void** Pointer to the object with the desired interface. In the case that the interface is

not supported or another error occurred, *ppv must be set to NULL.

Return Value Meaning

S_OK Success. The interface is supported
E_NOINTERFACE The interface is not supported
E_UNEXPECTED An unknown error occurred.

33 That is, a QueryInterface invocation where iid is 00000000-0000-0000-C000-000000000046.
34 While this set of rules may seem surprising to some, they are needed in order that remote access to interface pointers can be provided with a

reasonable degree of efficiency (without this, interface pointers could not be cached on a remote machine). Further, as QueryInterface forms

the fundamental architectural basis by which clients reason about the capabilities of an object with which they have come in contact, stability is
needed to make any sort of reasonable reasoning and capability discovery possible.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 67 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

.2 IUnknown::AddRef

ULONG IUnknown::AddRef(void)

Increments the reference count in this interface instance.

Objects implementations are required to support a certain minimum size for the counter that is internally maintained

by AddRef. In short, this counter must be at least 31 bits large. The precise rule is that the counter must be large

enough to support 231-1 outstanding pointer references to all the interfaces on a given object taken as a whole. Just

make it a 32 bit unsigned integer, and youôll be fine.

Argument Type Description

return value ULONG The resulting value of the reference count. This value is returned solely for di-

agnostic/testing purposes; it absolutely holds no meaning for release code since

in certain situations it is unstable

.3 IUnknown::Release

ULONG IUnknown::Release(void)

Release a reference to this interface instance.

If AddRef has been called on this object (through any IUnknown members of its interfaces) n times and this is the nth

call to Release, then the interface instance will free itself.

Release cannot indicate failure; if a client needs to know that resources have been freed etc., it must use a method in

some interface on the object with higher level semantics before calling release.

Argument Type Description

return value ULONG The resulting value of the reference count. This value is returned solely for di-

agnostic/testing purposes; it only has meaning when the return is zero meaning

that the object cannot be considered valid in any way by the caller. Non-zero

values are meaningless to the caller.

.2 Reference Counting

Objects accessed through interfaces use a reference counting mechanism to ensure that the lifetime of the object

includes the lifetime of references to it. This mechanism is adopted so that independent components can obtain and

release access to a single object, and not have to coordinate with each other over the lifetime management. In a

sense, the object provides this management, so long as the client components conform to the rules. Within a single

component that is completely under the control of a single development organization, clearly that organization can

adopt whatever strategy it chooses. The following rules are about how to manage and communicate interface in-

stances between components, and are a reasonable starting point for a policy within a component.

Note that the reference counting paradigm applies only to pointers to interfaces; pointers to data are not referenced

counted.

It is important to be very clear on exactly when it is necessary to call AddRef and Release through an interface pointer.

By its nature, pointer management is a cooperative effort between separate pieces of code, which must all therefore

cooperate in order that the overall management of the pointer be correct. The following discussion should hopefully

clarify the rules as to when AddRef and Release need to be called in order that this may happen. Some special refer-

ence counting rules apply to objects which are aggregated; see the discussion of aggregation in Chapter 6.

The conceptual model is the following: interface pointers are thought of as living in pointer variables, which for the

present discussion will include variables in memory locations and in internal processor registers, and will include

both programmer- and compiler-generated variables. In short, it includes all internal computation state that holds an

interface pointer. Assignment to or initialization of a pointer variable involves creating a new copy of an already

existing pointer: where there was one copy of the pointer in some variable (the value used in the assign-

ment/initialization), there is now two. An assignment to a pointer variable destroys the pointer copy presently in the

variable, as does the destruction of the variable itself (that is, the scope in which the variable is found, such as the

stack frame, is destroyed).

Rule 1: AddRef must be called for every new copy of an interface pointer, and Release called every destruc-

tion of an interface pointer except where subsequent rules explicitly permit otherwise.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 68 DRAFT: October 24, 1995

 All Rights Reserved

This is the default case. In short, unless special knowledge permits otherwise, the worst case must be assumed. The

exceptions to Rule 1 all involve knowledge of the relationships of the lifetimes of two or more copies of an interface

pointer. In general, they fall into two categories.35

Pointer Copy 1

Pointer Copy 2

Time

A2 R2

A1 R1

Category 1. Nested lifetimes

Pointer Copy 1

Pointer Copy 2

Time

A2 R2

A1 R1

Category 2. Staggered overlapping lifetimes

In Category 1 situations, the AddRef A2 and the Release R2 can be omitted, while in Category 2, A2 and R1 can be

eliminated.

Rule 2: Special knowledge on the part of a piece of code of the relationships of the beginnings and the end-

ings of the lifetimes of two or more copies of an interface pointer can allow AddRef/Release pairs to be

omitted.

The following rules call out specific common cases of Rule 2. The first two of these rules are particularly important,

as they are especially common.

Rule 2a: In-parameters to functions. The copy of an interface pointer which is passed as an actual parame-

ter to a function has a lifetime which is nested in that of the pointer used to initialize the value. The ac-

tual parameter therefore need not be separately reference counted.

Rule 2b: Out-parameters from functions, including return values. This is a Category 2 situation. In order to

set the out parameter, the function itself by Rule 1 must have a stable copy of the interface pointer. On

exit, the responsibility for releasing the pointer is transferred from the callee to the caller. The

out-parameter thus need not be separately reference counted.

Rule 2c: Local variables. A function implementation clearly has omniscient knowledge of the lifetimes of

each of the pointer variables allocated on the stack frame. It can therefore use this knowledge to omit

redundant AddRef/Release pairs.

Rule 2d: Backpointers. Some data structures are of the nature of containing two components, A and B, each

with a pointer to the other. If the lifetime of one component (A) is known to contain the lifetime of the

other (B), then the pointer from the second component back to the first (from B to A) need not be ref-

erence counted. Often, avoiding the cycle that would otherwise be created is important in maintaining

the appropriate deallocation behavior. However, such non-reference counted pointers should be used

with extreme caution.In particular, as the remoting infrastructure cannot know about the semantic rela-

tionship in use here, such backpointers cannot be remote references. In almost all cases, an alternative

design of having the backpointer refer a second ñfriendò object of the first rather than the object itself

(thus avoiding the circularity) is a superiour design. The following figure illustrates this concept.36

Object 1 Object 2

friend of

Object 1

The following rules call out common non-exceptions to Rule 1.

35 There are in fact more general cases than illustrated here involving n-way rather than 2-way interactions of matched AddRef / Release pairs,

but that will not be elaborated on here.
36 The connection point interfaces introduced in the OLE Controls specification are a real world example of this concept.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 69 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Rule 1a: In-Out-parameters to functions. The caller must AddRef the actual parameter, since it will be

Released by the callee when the out-value is stored on top of it.

Rule 1b: Fetching a global variable. The local copy of the interface pointer fetched from an existing copy

of the pointer in a global variable must be independently reference counted since called functions might

destroy the copy in the global while the local copy is still alive.

Rule 1c: New pointers synthesized out of ñthin air.ò A function which synthesizes an interface pointer us-

ing special internal knowledge rather than obtaining it from some other source must do an initial AddRef

on the newly synthesized pointer. Important examples of such routines include instance creation rou-

tines, implementations of IUnknown::QueryInterface, etc.

Rule 1d: Returning a copy of an internally stored pointer. Once the pointer has been returned, the callee has

no idea how its lifetime relates to that of the internally stored copy of the pointer. Thus, the callee must

call AddRef on the pointer copy before returning it.

Finally, when implementing or using reference counted objects, a technique sometimes termed ñartificial reference

countsò sometimes proves useful. Suppose youôre writing the code in method Foo in some interface IInterface. If in the

implementation of Foo you invoke functions which have even the remotest chance of decrementing your reference

count, then such function may cause you to release before it returns to Foo. The subsequent code in Foo will crash.

A robust way to protect yourself from this is to insert an AddRef at the beginning of Foo which is paired with a Release

just before Foo returns:

void IInterface::Foo(void) {

 this37->AddRef();

 /*

 * Body of Foo, as before, except short-circuit returns

 * need to be changed.

 */

 this->Release();

 return;

 }

These ñartificialò reference counts guarantee object stability while processing is done.

4 Error Codes and Error Handling

COM interface member functions and COM Library API functions use a specific convention for error codes in order

to pass back to the caller both a useful return value and along with an indication of status or error information. For

example, it is highly useful for a function to be capable of returning a Boolean result (true or false) as well as indi-

cate failure or successðreturning true and false means that the function executed successfully, and true or false is the

answer whereas an error code indicates the function failed completely.

But before we get into error handling in COM, weôll first take a small digression. Many readers might here be won-

dering about exceptions. How do exceptions relate to interfaces? In short, it is strictly illegal to throw an exception

across an interface invocation; all such cross-interface exceptions which are thrown are in fact bugs in the offending

interface implementation. Why have such a policy? The first, straightforward, pragmatic reason is the technical real-

ity that there simply isnôt an ubiquitous exception model or semantic that is broadly supported across languages and

operating systems that one could choose to permit; recall that location transparency and language independence are

important design goals of COM. Further, simplicity is also an important design goal. It is well-understood that, quite

apart from COM per se, the exceptions that may be legally thrown from a function implementation in the public

interface of an encapsulated module must necessarily from part of the contract of that function implementation.

Thus, a thrown exception across such a boundary is merely an alternative mechanism by which values may be re-

turned from the function. In COM, we instead make use of the simpler, ubiquitous, already-existing return-value

mechanism for returning information from a function as our error reporting mechanism: simply returning HRESULTs,

which are the topic of this section.

This all being said, it would be absolutely perfectly reasonable for the implementor of a tool for using or implement-

ing COM interfaces to within the body of code managed by his tool turn errors returned from invoked COM inter-

faces into local exceptions and, conversely, to turn internally generated exceptions into error-returns across an inter-

face boundary. This is yet another example of the clear architectural difference that needs to be made between the

37 ñThisò is the appropriate thing to AddRef in an object implementation using the approach of multiply inheriting from the suite of interfaces

supported by the object; more complex implementation strategies will need to modify this appropriately.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 70 DRAFT: October 24, 1995

 All Rights Reserved

rules and design of the underlying COM system architecture and the capabilities and design freedom afforded to

tools that support that architecture.

.1 HRESULT

The key type involved in COM error reporting is HRESULT.38 In addition, the COM Library provides a few functions

and macros to help applications of any kind deal with error information. An HRESULT is a simple 32-bit value:

typedef LONG HRESULT;

An HRESULT is divided up into an internal structure that has four fields with the following format (numbers indicate

bit positions):

3 3 2 2 1 1

1 0 9 8 6 5 0

S R Facility Code

S: (1 bit) Severity field:

0 Success. The function was successful; it behaved according to its proscribed semantics.

1 Error. The function failed due to an error condition.

R: (2 bits) Reserved for future use; must be set to zero by present programs generating HRESULTs;

present code should not take action that relies on any particular bits being set or cleared this

field.

Facility : (13 bits) Indicates which group of status codes this belongs to. New facilities must be allocated

by a central coordinating body since they need to be universally unique.39 However, the need for

new facility codes is very small. Most cases can and should use FACILITY_ITF. See the section

ñUse of FACILITY_ITFò below.

Code: (16 bits) Describes what actually took place, error or otherwise.

COM presently defines the following facility codes:

Facility Name Facility

Value

Description

FACILITY_NULL 0 Used for broadly applicable common status codes that have no specific

grouping. S_OK belongs to this facility, for example.
FACILITY_ITF 4 Used for by far the majority of result codes that are returned from an interface

member function. Use of this facility indicates that the meaning of the error

code is defined solely by the definition of the particular interface in question;

an HRESULT with exactly the same 32-bit value returned from another in-

terface might have a different meaning

FACILITY_RPC 1 Used for errors that result from an underlying remote procedure call imple-

mentation. In general, this specification does not explicitly document the RPC

errors that can be returned from functions, though they nevertheless can be

returned in situations where the interface being used is in fact remoted
FACILITY_DISPATCH 2 Used for IDispatch-interface-related status codes.

FACILITY_STORAGE 3 Used for persistent-storage-related status codes. Status codes whose code

(lower 16 bits) value is in the range of DOS error codes (less than 256) have

the same meaning as the corresponding DOS error.
FACILITY_WIN32 7 Used to provide a means of mapping an error code from a function in the

Win32 API into an HRESULT. The semantically significant part of a Win32

error is 16 bits large.

FACILITY_WINDOWS 8 Used for additional error codes from Microsoft-defined interfaces.
FACILITY_CONTROL 10 Used for OLE Controls-related error values.

A particular HRESULT value by convention uses the following naming structure:

38 The name ñHRESULTò is retained for historical reasons. Readers familiar with programming COM on the Windows platform will note that

HRESULT is analogous to SCODE.
39 As of this writing, said body is Microsoft Corporation.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 71 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

 <Facility>_<Sev>_<Reason>

where <Facility> is either the facility name or some other distinguishing identifier, <Sev> is a single letter, one of

the set { S, E } indicating the severity (success or error), and <Reason> is a short identifier that describes the mean-

ing of the code. Status codes from FACILITY_NULL omit the <Facility>_ prefix. For example, the status code

E_NOMEMORY is the general out-of memory error. All codes have either S_ or E_ in them allowing quick visual de-

termination if the code means success or failure.

The general ñsuccessò HRESULT is named S_OK, meaning ñeverything workedò as per the function specification. The

value of this HRESULT is zero. In addition, as it is useful to have functions that can succeed but return Boolean re-

sults, the code S_FALSE is defined are success codes intended to mean ñfunction worked and the result is false.ò

#define S_OK 0

#define S_FALSE 1

A list of presently-defined standard error codes and their semantics can be found in Appendix A.

From a general interface design perspective, ñsuccessò status codes should be used for circumstances where the con-

sequence of ñwhat happenedò in a method invocation is most naturally understood and dealt with by client code by

looking at the out-values returned from the interface function: NULL pointers, etc. ñErrorò status codes should in

contrast be used in situations where the function has performed in a manner that would naturally require ñout of

bandò processing in the client code, logic that is written to deal with situations in which the interface implementation

truly did not behave in a manner under which normal client code can make normal forward progress. The distinction

is an imprecise and subtle one, and indeed many existing interface definitions do not for historical reasons abide by

this reasoning. However, with this approach, it becomes feasible to implement automated COM development tools

that appropriately turn the error codes into exceptions as was mentioned above.

Interface functions in general take the form:

HRESULT ISomeInteface::SomeFunction(ARG1_T arg1, ... , ARGN_T argn, RET_T * pret);

Stylistically, what would otherwise be the return value is passed as an out-value through the last argument of the

function. COM development tools which map error returns into exceptions might also consider mapping the last

argument of such a function containing only one out-parameter into what the programmer sees as the ñreturn valueò

of the method invocation.

The COM remoting infrastructure only supports reporting of RPC-induced errors (such as communication failures)

through interface member functions that return HRESULTs. For interface member functions of other return types (e.g.:

void), such errors are silently discarded. To do otherwise would, to say the least, significantly complicate local /

remote transparency.

.1 Use of FACILITY_ITF

The use of FACILITY_ITF deserves some special discussion with respect to interfaces defined in COM and interfaces

that will be defined in the future. Where as status codes with other facilities (FACILITY_NULL, FACILITY_RPC, etc.)

have universal meaning, status codes in FACILITY_ITF have their meaning completely determined by the interface

member function (or API function) from which they are returned; the same 32-bit value in FACILITY_ITF returned

from two different interface functions may have completely different meanings.

The reasoning behind this distinction is as follows. For reasons of efficiency, it is unreasonable to have the primary

error code data type (HRESULT) be larger than 32 bits in size. 32 bits is not large enough, unfortunately, to enable

COM to develop an allocation policy for error codes that will universally avoid conflict between codes allocated by

different non-communicating programmers at different times in different places (contrast, for instance, with what is

done with IIDs and CLSIDs). Therefore, COM structures the use of the 32 bit SCODE in such a way so as to allow

the a central coordinating body40 to define some universally defined error codes while at the same time allowing

other programmers to define new error codes without fear of conflict by limiting the places in which those

field-defined error codes can be used. Thus:

1. Status codes in facilities other than FACILITY_ITF can only be defined by the central coordinating body.

2. Status codes in facility FACILITY_ITF are defined solely by the definer of the interface or API by which

said status code is returned. That is, in order to avoid conflicting error codes, a human being needs to

coordinate the assignment of codes in this facility, and we state that he who defines the interface gets to

do the coordination.

40 As of this writing, said body is Microsoft Corporation.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 72 DRAFT: October 24, 1995

 All Rights Reserved

COM itself defines a number of interfaces and APIs, and so COM defines many status codes in FACILITY_ITF. By

design, none of the COM-defined status codes in fact have the same value, even if returned by different interfaces,

though it would have been legal for COM to do otherwise.

Likewise, it is possible (though not required) for designers of COM interface suites to coordinate the error codes

across the interfaces in that suite so as to avoid duplication. The designers of the OLE 2 interface suite, for example,

ensured such lack of duplication.

Thus, with regard to which errors can be returned by which interface functions, it is the case that, in the extreme,

¶ It is legal that any COM-defined error code may in fact be returned by any COM-defined interface

member function or API function. This includes errors presently defined in FACILITY_ITF. Further,

COM may in the future define new failure codes (but not success codes) that may also be so ubiqui-

tously returned.

 Designers of interface suites may if they wish choose to provide similar rules across the interfaces in

their suites.

¶ Further, any error in FACILITY_RPC or other facility, even those errors not presently defined, may be

returned.

Clients must treat error codes that are unknown to them as synonymous with E_UNEXPECTED, which in general

should be and is presently a legal error return value from each and every interface member function in all interfaces;

interface designers and implementors are responsible to insure that any newly defined error codes they should

choose to invent or return will be such that that existing clients with code treating generic cases as synonymous with

E_UNEXPECTED this will have reasonable behavior.

In short, if you know the function you invoked, you know as a client how to unambiguously take action on any error

code you receive. The interface implementor is responsible for maintaining your ability to do same.

Normally, of course, only a small subset of the COM-defined status codes will be usefully returned by a given inter-

face function or API, but the immediately preceding statements are in fact the actual interoperability rules for the

COM-defined interfaces. This specification endeavors to point out which error codes are particularly useful for each

function, but code must be written to correctly handle the general rule.

The present document is, however, precise as to which success codes may legally be returned.

Conversely, it is only legal to return a status code from the implementation of an interface member function which

has been sanctioned by the designer of that interface as being legally returnable; otherwise, there is the possibility of

conflict between these returned code values and the codes in-fact sanctioned by the interface designer. Pay particular

attention to this when propagating errors from internally called functions. Nevertheless, as noted above, callers of

interfaces must to guard themselves from imprecise interface implementations by treating any otherwise unknown

returned error code (in contrast with success code) as synonymous with E_UNEXPECTED: experience shows that

programmers are notoriously lax in dealing with error handling. Further, given the third bullet point above, this cod-

ing practice is required by clients of the COM-defined interfaces and APIs. Pragmatically speaking, however, this is

little burden to programmers: normal practice is to handle a few special error codes specially, but treat the rest ge-

nerically.

All the COM-defined FACILITY_ITF codes will, in fact, have a code value which lies in the region 0x0000 ð 0x01FF.

Thus, while it is indeed legal for the definer of a new function or interface to make use of any codes in FACILITY_ITF

that he chooses in any way he sees fit, it is highly recommended that only code values in the range 0x0200 ð 0xFFFF

be used, as this will reduce the possibility of accidental confusion with any COM-defined errors. It is also highly

recommended that designers of new functions and interfaces consider defining as legal that most if not all of their

functions can return the appropriate status codes defined by COM in facilities other than FACILITY_ITF.

E_UNEXPECTED is a specific error code that most if not all interface definers will wish to make universally legal.

.2 COM Library Error-Related Macros and Functions

The following macros and functions are defined in the COM Library include files to manipulate status code values.

#define SEVERITY_SUCCESS 0

#define SEVERITY_ERROR 1

#define SUCCEEDED(Status) ((HRESULT)(Status) >= 0)

#define FAILED(Status) ((HRESULT)(Status)<0)

#define HRESULT_CODE(hr) ((hr) & 0xFFFF)

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 73 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

#define HRESULT_FACILITY(hr) (((hr) >> 16) & 0x1fff)

#define HRESULT_SEVERITY(hr) (((hr) >> 31) & 0x1)

#define MAKE_HRESULT(sev,fac,code) \

 ((HRESULT) (((unsigned long)(sev)<<31) | ((unsigned long)(fac)<<16) | ((unsigned long)(code))))

.1 SUCCEEDED

SUCCEEDED(HRESULT Status)

The SUCCEEDED macro returns TRUE if the severity of the status code is either success or information; otherwise,

FALSE is returned.

.2 FAILED

FAILED(HRESULT Status)

The FAILED macro returns TRUE if the severity of the status code is either a warning or error; otherwise, FALSE

is returned.

.3 HRESULT_CODE

HRESULT_CODE(HRESULT hr)

HRESULT_CODE returns the error code part from a specified status code.

.4 HRESULT_FACILITY

HRESULT_FACILITY(HRESULT hr)

HRESULT_FACILITY extracts the facility from a specified status code.

.5 HRESULT_SEVERITY

HRESULT_SEVERITY(HRESULT hr)

HRESULT_SEVERITY extracts the severity field from the specified status code.

.6 MAKE_HRESULT

MAKE_HRESULT(SEVERITY sev, FACILITY fac, HRESULT hr)

MAKE_HRESULT makes a new status code given a severity, a facility, and a status code.

5 Enumerators and Enumerator Interfaces

A frequent programming task is that of iterating through a sequence of items. The COM interfaces are no exception:

there are places in several interfaces described in this specification where a client of some object needs to iterate

through a sequence of items controlled by the object. COM supports such enumeration through the use of ñenumera-

tor objects.ò Enumerators cleanly separate the callerôs desire to loop over a set of objects from the calleeôs

knowledge of how to accomplish that function.

Enumerators are just a concept; there is no actual interface called IEnumerator or IEnum or the like. This is due to the

fact that the function signatures in an enumerator interface must include the type of the things that the enumerator

enumerates. As a consequence, separate interfaces exist for each kind of thing that can be enumerated. However, the

difference in the type being enumerated is the only difference between each of these interfaces; they are all used in

fundamentally the same way. In other words, they are ñgenericò over the element type. This document describes the

semantics of enumerators using a generic interface IEnum and the C++ parameterized type syntax where ELT_T,

which stands for ñELemenT Typeò41 is representative of the type involved in the enumeration:

[

 object,

 uuid(<IID_IEnum <ELT_T>>), // IID_IEnum<ELT_T>

 pointer_default(unique)

]

41 ñeltò by itself in the function prototypes is just ñelementò

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 74 DRAFT: October 24, 1995

 All Rights Reserved

interface IEnum<ELT_T> : IUnknown

{

 HRESULT Next([in] ULONG celt, [out] IUnknown **rgelt, [out] ULONG *pceltFetched);

 HRESULT Skip([in] ULONG celt);

 HRESULT Reset(void);

 HRESULT Clone([out] IEnum<ELT_T>**ppenum);

}

A typical use of an enumerator is the following.

//Somewhere thereôs a type called ñStringò

typedef char * String;

//Interface defined using template syntax

typedef IEnum<char *> IEnumString;

...

interface IStringManager {

 virtual IEnumString* EnumStrings(void) = 0;

 };

...

void SomeFunc(IStringManager * pStringMan) {

 char * psz;

 IEnumString * penum;

 penum=pStringMan->EnumStrings();

 while (S_OK==penum->Next(1, &psz, NULL))

 {

 //Do something with the string in psz and free it

 }

 penum->Release();

 return;

 }

.1 IEnum::Next

HRESULT IEnum::Next(celt, rgelt, pceltFetched)

Attempt to get the next celt items in the enumeration sequence, and return them through the array pointed to by rgelt.

If fewer than the requested number of elements remain in the sequence, then just return the remaining ones; the actu-

al number of elements returned is passed through *pceltFetched (unless it is NULL). If the requested celt elements are

in fact returned, then return S_OK; otherwise return S_FALSE. An error condition other than simply ñnot that many

elements leftò will return an SCODE which is a failure code rather than one of these two success values.

To clarify:

¶ If S_OK is returned, then on exit the all celt elements requested are valid and returned in rgelt.

¶ If S_FALSE is returned, then on exit only the first *pceltFetched entries of rgelt are valid. The contents of the re-

maining entries in the rgelt array are indeterminate.

¶ If an error value is returned, then on exit no entries in the rgelt array are valid; they are all in an indeterminate

state.

Argument Type Description

celt ULONG The number of elements that are to be returned.

rgelt42 ELT_T* An array of size at least celt in which the next elements are to be returned.

pceltFetched ULONG* May be NULL if celt is one. If non-NULL, then this is set with the number of ele-

ments actually returned in rgelt.

Return Value Meaning

S_OK Success. The requested number of elements were returned.
S_FALSE Success. Fewer than the requested number of elements were returned.
E_UNEXPECTED An unknown error occurred.

42 Think of ñrgeltò as short for ñrange of eltò, signifying an array.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 75 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

.2 IEnum::Skip

HRESULT IEnum::Skip(celt)

Attempt to skip over the next celt elements in the enumeration sequence. Return S_OK if this was accomplished, or

S_FALSE if the end of the sequence was reached first.

Argument Type Description

celt ULONG The number of elements that are to be skipped.

Return Value Meaning

S_OK Success. The requested number of elements were skipped.

S_FALSE Success. Some skipping was done, but the end of the sequence was hit before

the requested number of elements could be skipped.
E_UNEXPECTED An unknown error occurred.

.3 IEnum::Reset

HRESULT IEnum::Reset(void)

Reset the enumeration sequence back to the beginning.

Note that there is no intrinsic guarantee that exactly the same set of objects will be enumerated the second time as

was enumerated the first. Though clearly very desirable, whether this is the case or not is dependent on the collection

being enumerated; some collections will simply find it too expensive to maintain this condition. Consider enumerat-

ing the files in a directory, for example, while concurrent users may be making changes.

Return Value Meaning

S_OK Success. The enumeration was reset to its beginning.

E_UNEXPECTED An unknown error occurred.

.4 IEnum::Clone

HRESULT IEnum::Clone(ppenum)

Return another enumerator which contains exactly the same enumeration state as this one. Using this function, a

client can remember a particular point in the enumeration sequence, then return to it at a later time. Notice that the

enumerator returned is of the same actual interface as the one which is being cloned.

Caveats similar to the ones found in IEnum::Reset regarding enumerating the same sequence twice apply here as well.

Argument Type Description

ppenum IEnum<ELT_T>** The place in which to return the clone enumerator.

Return Value Meaning

S_OK Success. The enumeration was reset to its beginning.
E_UNEXPECTED An unknown error occurred.

6 Designing and Implementing Objects

Objects can come in all shapes and sizes and applications will implement objects for various purposes with or with-

out assigning the class a CLSID. COM servers implement objects for the sake of serving them to clients. In some

cases, such as data change notification, a client itself will implement a classless object to essentially provide callback

functions for the server object.

In all cases there is only one requirement for all objects: implement at least the IUnknown interface. An object is not a

COM object unless it implements at least one interface which at minimum is IUnknown. Not all objects even need a

unique identifier, that is, a CLSID. In fact, only those objects that wish to allow COM to locate and launch their im-

plementations really need a CLSID. All other objects do not.

IUnknown implemented by itself can be useful for objects that simply represent the existence of some resource and

control that resourceôs lifetime without providing any other means of manipulating that resource. By and large,

however, most interesting objects will want to provide more services, that is, additional interfaces through which to

manipulate the object. This all depends on the purpose of the object and the context in which clients (or whatever

other agents) use it. The object may wish to provide some data exchange capabilities by implementing IDataObject, or

may wish to indicate the contract through which it can serialize itôs information by implementing one of the IPersist

flavors of interfaces. If the object is a moniker, it will implement an interface called IMoniker that weôll see in Chapter

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 76 DRAFT: October 24, 1995

 All Rights Reserved

9. Objects that are used specifically for handling remote procedure calls implement a number of specialized interfac-

es themselves as weôll see in Chapter 7.

The bottom line is that you decide what functionality the object should have and implement the interface that repre-

sents that functionality. In some cases there are no standard interfaces that contain the desired functionality in which

case you will want to design a custom interface. You may need to provide for remoting that interface as described in

Chapter 7.

The following chapters that discuss COM clients and servers use as an example an object class designed to render

ASCII text information from text stored in files. This object class is called ñTextRenderò and it has a CLSID of

{12345678-ABCD-1234-5678-9ABCDEF00000}43 defined as the symbol CLSID_TextRender in some include file. Note again

that an object class does not have to have an associated CLSID. This example has one so we can use it to demonstrate

COM clients and servers in Chapters 5 and 6.

The TextRender object can read and write text to and from a file, and so implements the IPersistFile interface to support

those operations. An object can be initialized (see Chapter 5, ñInitializing the Objectò) with the contents of a file

through IPersistFile::Load. The object class also supports rendering the text data into straight text as well as graphically

as metafiles and bitmaps. Rendering capabilities are handled through the IDataObject interface, and IDataObject::SetData

when given text forms a second initializing function.44 The operation of TextRender objects is illustrated in Figure

3-4:

Object
IDataObject

IPersistFile

Figure 3-4: An object with IDataObject and IPersistFile Interfaces.

The ñObject Reusabilityò section of Chapter 6 will show how we might implement this object when another object

that provides some the desired functionality is available for reuse. But for now, we want to see how to implement

this object on its own.

.1 Implementing Interfaces: Multiple Inheritance

There are two different strategies for implementing interfaces on an object: multiple inheritance and interface con-

tainment. Which method works best for you depends first of all on your language of choice (languages that donôt

have an inheritance notion cannot support multiple inheritance, obviously) but if you are implementing an object in

C++, which is a common occurrence, your choice depends on the object design itself.

Multiple inheritance works best for most objects. Declaring an object in this manner might appear as follows:

class CTextRender : public IDataObject, public IPersistFile {

 private:

 ULONG m_cRef; //Reference Count

 char * m_pszText; //Pointer to allocated text

 ULONG m_cchText; //Number of characters in m_pszText

 //Other internal member functions here

 public:

 [Constructor, Destructor]

 /*

 * We must override all interface member functions we

 * inherit to create an instantiatable class.

 */

 //IUnknown members shared between IDataObject and IPersistFi le

 HRESULT QueryInterface(REFIID iid, void ** ppv);

 ULONG AddRef(void);

 ULONG Release(void);

 //IDataObject Members overrides

 HRESULT GetData(FORAMTETC *pFE, STGMEDIUM *pSTM);

 [Other members]

43 Do not use this CLSID for your own purposesïit is simply an example. See the section "Identifying and Registering the Object" below.
44 In other words, the client may initialize the object by telling it to read text from a file or by handing text to it through IDataObject::SetData. Either

way, the object now has some text to render graphically or to save to a file.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 77 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

 ...

 //IPersistFile Member overrides

 HRESULT Load(char * pszFile, DWORD grfMode);

 [Other members]

 ...

 };

This object class inherits from the interfaces it wishes to implement, declares whatever variables are necessary for

maintaining the object state, and overrides all the member functions of all inherited interfaces, remembering to in-

clude the IUnknown members that are present in all other interfaces. The implementation of the single QueryInterface

function of this object would use typecasts to return pointers to different vtbl pointers:

HRESULT CTextRender::QueryInterface(REFIID iid, void ** ppv) {

 *ppv=NULL;

 //This code assumes an overloaded == operator for GUIDs exists

 if (IID_IUnknown==iid)

 *ppv=(void *)(IUnknown *)this;

 if (IID_IPersitFile==iid)

 *ppv=(void *)(IPersistFile *)this;

 if (IID_IDataObject==iid)

 *ppv=(void *)(IDataObject *)this;

 if (NULL==*ppv)

 return E_NOINTERFACE; //iid not supported.

 // Any call to anyoneôs AddRef is our own, so we can just call that directly

 AddRef();

 return NOERROR;

 }

This technique has the advantage that all the implementation of all interfaces is gathered together in the same object

and all functions have quick and direct access to all the other members of this object. In addition, there only needs to

be one implementation of the IUnknown members. However, when we deal with aggregation in Chapter 6 we will see

how an object might need a separate implementation of IUnknown by itself.

.2 Implementing Interfaces: Interface Containment

There are at times reasons why you may not want to use multiple inheritance for an object implementation. First, you

may not be using C++. That aside, you may want to individually track reference counts on each interface separate

from the overall object for debugging or for resource management purposesðreference counting is from a client

perspective an interface-specific operation. This can uncover problems in a client you might also be developing,

exposing situations where the client is calling AddRef through one interface but matching it with a Release call

through a different interface. The third reason that you would use a different method of implementation is when you

have two interfaces with the same member function names with possibly identical function signatures or when you

want to avoid function overloading. For example, if you wanted to implement IPersistFile, IPersistStorage, and

IPersistStream on an object, you would have to write overloaded functions for the Load and Save members of each

which might get confusing. Worse, if two interface designers should happen to define interfaces that have

like-named methods with like parameter lists but incompatible semantics, such overloading isnôt even possible: two

separate functions need to be implemented, but C++ unifies the two method definitions. Note that as in general in-

terfaces may be defined by independent parties that do not communicate with each other, such situations are inevita-

ble.

The other implementation method is to use ñinterface implementationsò which are separate C++ objects that each

inherit from and implement one interface. The real object itself singly inherits from IUnknown and maintains (or con-

tains) pointers to each interface implementation that it creates on initialization. This keeps all the interfaces separate

and distinct. An example of code that uses the containment policy follows:

class CImpIPersistFile : public IPersistFile {

 private:

 ULONG m_cRef; //Interface reference count for debugging

 //"Backpointer" to the actual object.

 class CTextRender * m_pObj;

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 78 DRAFT: October 24, 1995

 All Rights Reserved

 public:

 [Constructor, Destructor]

 //IUnknown members for IPersistFile

 HRESULT QueryInterface(REFIID iid, void ** ppv);

 ULONG AddRef(void);

 ULONG Release(void);

 //IPersistFile Member overrides

 HRESULT Load(char * pszFile, DWORD grfMode);

 [Other members]

 ...

 }

class CImpIDataObject : public IDataObject

 private:

 ULONG m_cRef; //Interface reference count for debugging

 //"Backpointer" to the actual object.

 class CTextRender * m_pObj;

 public:

 [Constructor, Destructor]

 //IUnknown members for IDataObject

 HRESULT QueryInterface(REFIID iid, void ** ppv);

 ULONG AddRef(void);

 ULONG Release(void);

 //IPersistFile Member overrides

 HRESULT GetData(FORMATETC *pFE,STGMEDIUM *pSTM);

 [Other members]

 ...

 }

class CTextRender : public IUnknown

 {

 friend class CImpIDataObject;

 friend class CImpIPersistFile;

 private:

 ULONG m_cRef; //Reference Count

 char * m_pszText; //Pointer to allocated text

 ULONG m_cchText; //Number of characters in m_pszText

 //Contained interface implementations

 CImpIPersistFile * m_pImpIPersistFile;

 CImpIDataObject * m_pImpIDataObject;

 //Other internal member functions here

 public:

 [Constructor, Destructor]

 HRESULT QueryInterface(REFIID iid, void ** ppv);

 ULONG AddRef(void);

 ULONG Release(void);

 };

In this technique, each interface implementation must maintain a backpointer to the real object in order to access that

objectôs variables (normally this is passed in the interface implementation constructor). This may require a friend

relationship (in C++) between the object classes; alternatively, these friend classes can be implemented as nested

classes in CTextRender.

Notice that the IUnknown member functions of each interface implementation do not need to do anything more than

delegate directly to the IUnknown functions implemented on the CTextRender object. The implementation of

QueryInterface on the main object would appear as follows:

HRESULT CTextRender::QueryInterface(REFIID iid, void ** ppv)

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 79 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

 {

 *ppv=NULL;

 //This code assumes an overloaded == operator for GUIDs exists

 if (IID_IUnknown==iid)

 *ppv=(void *)(IUnknown *)this;

 if (IID_IPersitFile==iid)

 *ppv=(void *)(IPersistFile *)m_pImpIPersistFile;

 if (IID_IDataObject==iid)

 *ppv=(void *)(IDataObject *)m_pImpIDataObject;

 if (NULL==*ppv)

 return E_NOINTERFACE; //iid not supported.

 //Call AddRef through the returned interface

 ((IUnknown *)ppv)->AddRef();

 return NOERROR;

 }

This sort of delegation structure makes it very easy to redirect each interfaceôs IUnknown members to some other

IUnknown, which is necessary in supporting aggregation as explained in Chapter 6. But overall the implementation is

not much different than multiple inheritance and both methods work equally well. Containment of interface imple-

mentation is more easily translatable into C where classes simply become equivalent structures, if for any reason

such readability is desirable (such as making the source code more comprehensible to C programmers who do not

know C++ and do not understand multiple inheritance). In the end it really all depends upon your preferences and

has no significant impact on performance nor development.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 80 DRAFT: October 24, 1995

 All Rights Reserved

This page intentionally left blank.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 81 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

4. COM Applications

All applications, that is, running programs that define a task or a process be they client or servers, have specific re-

sponsibilities. This chapter examines the roles and responsibilities of all COM applications and the necessary COM

library support functions for those responsibilities.

In short, any application that makes use of COM, client or server, has three specific responsibilities to insure proper

operation with other components:

1. On application startup, verify that the COM Library version is new enough to support the functionality expected

by the application. In general, an application can use an updated version of the library but not an older one or

one that has undergone a major version change.

2. On application startup, initialize the COM Library.

3. On application shutdown, uninitialize the COM Library to allow it to free resources and perform any cleanup

operations as necessary.

Each of these responsibilities requires support from the COM Library itself as detailed in the following sections. For

convenience, initialization and uninitialization are described together. Additional COM Library functions related to

initialization and memory management are also given in this chapter.

1 Verifying the COM Library Version

The COM Library defines a major version number and a minor version number and provide these in a header file

that is compiled with the COM application. Any application must then compare these compiled numbers with the

version of the available library and if the available library is incompatible the application cannot use COM. Similar-

ly, a DLL should check the library version in its initialization code and fail loading if the library is incompatible or

otherwise disable its COM functionality. The current major and minor version numbers are retrieved from COM

Library with the function CoBuildVersion.

.1 CoBuildVersion

DWORD CoBuildVersion(void)

Return the major and the minor version number of the Component Object Model library.

Argument Type Description

return value DWORD A 32 bit value whose high-order 16 bits are the major version number (rmm) and

whose low-order 16 bits are the minor version number (rup).

An application or DLL can run against only one major version of the COM Library but can run against any minor

version (possibly disabling specific minor features that are not available in a builds before a given minor number).

Therefore during startup (initialization for DLLs), all COM applications must include code similar to the following:

DWORD dwBuildVersion;

dwBuildVersion=CoBuildVersion();

if (HIWORD(dwBuildVersion)!=rmm)

 //Error: Canôt run against wrong major version

if (LOWORD(dwBuildVersion) < rup)

 //Disable features dependent on the rup version of COM (or simply fail)

//Continue initialization

2 Library Initialization / Uninitialization

Once the application has determined that it can run against the currently available version of the COM Library, it

must initialize the library through a function called CoInitialize. Calls made to CoInitialize must be matched with calls to

CoUninitialize to allow the COM Library to perform any final cleanup.

.1 CoInitialize

HRESULT CoInitialize(pReserved)

Initialize the Common Object Model library so that it can be used. With the exception of CoBuildVersion, this function

must be called by applications before any other function in the library. Calls to CoInitialize must be balanced by cor-

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 82 DRAFT: October 24, 1995

 All Rights Reserved

responding calls to CoUninitialize. Typically, CoInitialize is called only once by the process that wants to use the COM

library, although multiple calls can be made. Subsequent calls to CoInitialize return S_FALSE.

Argument Type Description

pReserved void* Reserved for future use. Presently, must be NULL.

Return Value Meaning

S_OK Success. Initialization has succeeded. This was the first initialization call in

this process.
S_FALSE Success. Initialization has succeeded, but this was not the first initialization

call in this process.
E_UNEXPECTED An unknown error occurred.

.2 CoUninitialize

void CoUninitialize(void)

Shuts down the Component Object Model library, thus freeing any resources that it maintains. Since CoInitialize and

CoUninitialize calls must be balanced, only the CoUninitialize call that corresponds to the CoInitialize call that actually did

the initialization will uninitialize the library.

3 Memory Management

As was articulated earlier in this specification, when ownership of allocated memory is passed through an interface,

COM requires45 that the memory be allocated with a specific ñtask allocator.ò Most general purpose access to the

task allocator is provided through the IMalloc interface instance returned from CoGetMalloc. Simple shortcut allocation

and freeing APIs are also provided in the form of CoTaskMemAlloc and CoTaskMemFree.

.1 IMalloc Interface

The IMalloc interface is an abstraction of familiar memory-allocation primitives that fit into the COM interface

model. Like all other interface, it is derived from IUnknown and correspondingly includes the AddRef, Release, and

QueryInterface member functions. The first three IMalloc-specific functions in this interface are merely simple abstrac-

tions of the familiar C-library functions malloc, realloc, and free.

[

 local,

 object,

 uuid(00000002-0000-0000-C000-000000000046)

]

interface IMalloc : IUnknown {

 void * Alloc([in] ULONG cb);

 void * Realloc([in] void * pv, [in] ULONG cb);

 void Free([in] void* pv);

 ULONG GetSize([in] void * pv);

 int DidAlloc([in] void * pv);

 void HeapMinimize(void);

 };

.1 IMalloc::Alloc

void * IMalloc::Alloc(cb)

Allocate a memory block of at least cb bytes. The initial contents of the returned memory block are undefined. Spe-

cifically, it is not guaranteed that the block is zeroed. The block actually allocated may be larger than cb bytes be-

cause of space required for alignment and for maintenance information. If cb is 0, Alloc allocates a zero-length item

and returns a valid pointer to that item. This function returns NULL if there is insufficient memory available.

Callers must always check the return from the this function, even if the amount of memory requested is small.

45 In general, though, precisely, one can invent interfaces which choose to violate this rule. However, such interfaces are, for example, unlikely to

have their remoting proxies and stubs generated with common tools.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 83 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Argument Type Description

cb ULONG The number of bytes to allocate.

return value void * The allocated memory block, or NULL if insufficient memory exists.

.2 IMalloc::Free

void IMalloc::Free(pv)

Deallocate a memory block. The pv argument points to a memory block previously allocated through a call to

IMalloc::Alloc or IMalloc::Realloc. The number of bytes freed is the number of bytes with which the block was originally

allocated (or reallocated, in the case of Realloc). After the call, the pv parameter is invalid, and can no longer be used.

pv may be NULL, in which case this function is a no-op.

Argument Type Description

pv void * Pointer to the block to free. May be NULL.

.3 IMalloc::Realloc

void * IMalloc::Realloc(pv, cb)

Change the size of a previously allocated memory block. The pv argument points to the beginning of the memory

block. If pv is NULL, Realloc functions in the same way as IMalloc::Alloc and allocates a new block of cb bytes. If pv is

not NULL, it should be a pointer returned by a prior call to IMalloc::Alloc.

The cb argument gives the new size of the block in bytes. The contents of the block are unchanged up to the shorter

of the new and old sizes, although the new block may be in a different location. Because the new block can be in a

new memory location, the pointer returned by Realloc is not guaranteed to be the pointer passed through the pv argu-

ment. If pv is not NULL and cb is 0, then the memory pointed to by pv is freed.

Realloc returns a void pointer to the reallocated (and possibly moved) memory block. The return value is NULL if the

size is zero and the buffer argument is not NULL, or if there is not enough available memory to expand the block to

the given size. In the first case, the original block is freed. In the second, the original block is unchanged.

The storage space pointed to by the return value is guaranteed to be suitably aligned for storage of any type of object.

To get a pointer to a type other than void, use a type cast on the return value.

Argument Type Description

pv void * Pointer to the block to reallocate. May be NULL.

cb ULONG The new size in bytes to allocate. May be zero.

return value void * The reallocated memory block, or NULL.

.4 IMalloc::GetSize

ULONG IMalloc::GetSize(pv)

Return the size, in bytes, of the memory block allocated by a previous call to IMalloc::Alloc or IMalloc::Realloc on this

memory manager.

Argument Type Description

pv void * The pointer to be tested. May be NULL, in which case -1 is returned.

return value ULONG The size of the allocated memory block

.5 IMalloc::DidAlloc

int IMalloc::DidAlloc(pv)

This function answers as whether or not the indicated memory pointer pv was allocated by the given allocator, if the

allocator is able to determine that fact (many memory allocators will not be able to do so).

The values 1 (one) and 0 (zero) are returned as ñdid allocò and ñdid not allocò answers respectively; -1 (minus one) is

returned if the IMalloc implementation is unable to determine whether it allocated the pointer or not.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 84 DRAFT: October 24, 1995

 All Rights Reserved

Argument Type Description

pv void * The pointer to be tested. May be NULL, in which case -1 is returned.

return value int -1, 0, 1

.6 IMalloc::HeapMinimize

void IMalloc::HeapMinimize()

Minimize the heap as much as possible for this allocator by, for example, releasing unused memory in the heap to the

operating system. This is useful in cases when a lot of allocations have been freed (using IMalloc::Free) and the appli-

cation wants to release the freed memory back to the operating system so that it is available for other purposes.

.2 COM Library Memory Management Functions

.1 CoGetMalloc

HRESULT CoGetMalloc(dwMemContext, ppMalloc)

This function retrieves from the COM library either the task memory allocator an optionally-provided shared

memory allocator. The particular allocator of interest is indicated by the dwMemContext parameter. Legal values for

this parameter are taken from the enumeration MEMCTX:

typedef enum tagMEMCTX {

 MEMCTX_TASK = 1, // task (private) memory

 MEMCTX_SHARED = 2, // shared memory (between processes)

 MEMCTX_MACSYSTEM = 3, // on the mac, the system heap

 // these are mostly for internal use...

 MEMCTX_UNKNOWN = -1, // unknown context (when asked about it)

 MEMCTX_SAME = -2, // same context (as some other pointer)

 } MEMCTX;

MEMCTX_TASK returns the task allocator. If CoInitialize has not yet been called, NULL we be stored in ppMalloc and

CO_E_NOTINITIALIZED returned from the function.

MEMCTX_SHARED returns an optionally-provided shared allocator; if the shared allocator is not supported,

E_INVALIDARG is returned. When supported, the shared allocator returned by this function is an COM-provided im-

plementation of IMalloc interface, one which allocates memory in such a way that it can be accessed by other process

on the current machine simply by conveying the pointer to said applications.46 Further, memory allocated by this

shared allocator in one application may be freed by the shared allocator in another. Except when a NULL pointer is

passed, the shared memory allocator never answers -1 to IMalloc::DidAlloc; it always indicates that either did or did not

allocate the passed pointer.

Argument Type Description

dwMemContext DWORD A value from the enumeration MEMCTX.

ppMalloc IMalloc ** The place in which the memory allocator should be returned.

Return Value Meaning

S_OK Success. The requested allocator was returned.

CO_E_NOTINITIALIZED The COM library has not been initialized.
E_INVALIDARG An invalid argument was passed.
E_UNEXPECTED An unknown error occurred.

.2 CoGetCurrentProcess

DWORD CoGetCurrentProcess(void)

Return a value unique to the current process. More precisely, return a value unique to the current process to the de-

gree that it will not be reused until 232 further processes have been created on the current workstation.

46 That is, the memory resides at the same address in all processes.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 85 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

Argument Type Description

return value DWORD A value unique to the current process.

.3 CoTaskMemAlloc

LPVOID CoTaskMemAlloc(cb)

Semantically identical to retrieving the current task allocator with CoGetMalloc, invoking IMalloc::Alloc on that pointer

with the same parameters, then releasing the IMalloc pointer.

Argument Type Description

cb ULONG The number of bytes to allocate.

return value void * The allocated memory block, or NULL if insufficient memory exists.

.4 CoTaskMemFree

void CoTaskMemFree(pv)

Semantically identical to retrieving the current task allocator with CoGetMalloc, invoking IMalloc::Free on that pointer

with the same parameters, then releasing the IMalloc pointer.

Argument Type Description

pv void * Pointer to the block to free. May be NULL.

.5 CoTaskMemRealloc

void CoTaskMemRealloc(pv, cb)

Semantically identical to retrieving the current task allocator with CoGetMalloc, invoking IMalloc::Realloc on that point-

er with the same parameters, then releasing the IMalloc pointer.

Argument Type Description

pv void * Pointer to the block to reallocate. May be NULL.

cb ULONG The new size in bytes to allocate. May be zero.

return value void * The reallocated memory block, or NULL.

4 Memory Allocation Example

An object may need to pass memory between it and the client at some point in the objectôs lifetimeðthis applies to

in-process as well as out-of-process servers. When such a situation arises the object must use the task allocator as

described in Chapter 2. That is, the object must allocate memory whose ownership is transferred from one party to

another through an interface function by using the local task allocator.

CoGetMalloc provides a convenient way for objects to allocate working memory as well. For example, when the

TextRender object (see Chapter 3, ñDesigning and Implementing Objectsò) under consideration in this document loads

text from a file in the function IPersistFile::Load (that is, CTextRender::Load) it will want to make a memory copy of that

text. It would use the task allocator for this purpose as illustrated in the following code (unnecessary details of open-

ing files and reading data are omitted for simplicity):

//Implementation of IPersistFile::Load

HRESULT CTextRender::Load(char *pszFile, DWORD grfMode) {

 int hFile;

 DWORD cch;

 IMalloc * pIMalloc;

 HRESULT hr;

 /*

 * Open the file and seek to the end to set the

 * cch variable to the length of the file.

 */

 hr=CoGetMalloc(MEMCTX_TASK, &pIMalloc);

 if (FAILED(hr))

 //Close file and return failure

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 86 DRAFT: October 24, 1995

 All Rights Reserved

 psz=pIMalloc->Alloc(cch);

 pIMalloc->Release();

 if (NULL==psz)

 //Close file and return failure

 //Read text into psz buffer and close file

 //Save memory pointer and return success

 m_pszText=psz;

 return NOERROR;

 }

If an object will make many allocations throughout itôs lifetime, it makes sense to call CoGetMalloc once when the

object is created, store the IMalloc pointer in the object (m_pIMalloc or such), and call IMalloc::Release when the object is

destroyed. Alternatively, the APIs CoTaskMemAlloc and its friends may be used.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 87 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

5. COM Clients

As described in earlier chapters, a COM Client is simply any piece of code that makes use of another object through

that objectôs interfaces. In this sense, a COM Client may itself be a COM Server acting in the capacity of a client by

virtue of using (or reusing) some other object.

If the client is an application, that is, an executable program as opposed to a DLL, then it must follow all the re-

quirements for a COM Application as detailed in Chapter 4. That aside, clients have a number of ways to actually get

at an object to use as discussed in a previous chapter. The client may call a specific function to create an object, it

might ask an existing object to create another, or it might itself implement an object to which some other code hands

yet another objectôs interface pointer. Not all of these objects must have CLSID.

This chapter, however, is concerned with those clients that want to create an object based on a CLSID, because at

some point or another, many operations that donôt directly involve a CLSID do eventually resolve to this process. For

example, moniker binding internally uses a CLSID but shields clients from that fact. In any case, whatever client code

uses a CLSID will generally perform the following operations in order to make use of an object:

1. Identify the class of object to use.

2. Obtain the ñclass factoryò for the object class and ask it to create an uninitialized instance of the

object class, returning an interface pointer to it.

3. Initialize the newly created object by calling an initialization member function of the ñinitialization

interface,ò that is, one of a generally small set of interfaces that have such functions.

4. Make use of the object which generally includes calling QueryInterface to obtain additional working

interface pointers on the object. The client must be prepared for the potential absence of a desired

interface.

5. Release the object when it is no longer needed.

The following sections cover the functions and interfaces involved in each of these steps. In addition, the client may

want to more closely manage the loading and unloading of server modules (DLLs or EXEs) for optimization purpos-

es, so this chapter includes a section of such management.

As far as the client is concerned, the COM Library exists to provide fundamental implementation locator and object

creation services and to handle remote procedure calls to local or remote objects (in addition to memory management

services, of course). How a server facilitates these functions is the topic of Chapter 6.

Before examining the details of object creating and manipulation, realize that after the object is created and the client

has its first interface pointer to that object, the client cannot distinguish an in-process object from a local object from

a remote object by virtue of examining the interface pointer or any other interfaces on that object. That is, all objects

appear identically to the client such that after creation, all requests made to the objectôs services are made by calling

interface member functions. Period. There are not special exceptions that a client must make at run-time based on the

distance of the object in question. The COM Library provides any underlying glue to insure that a call made to a

local or remote object is, in fact, marshaled properly to the other process or the other machine, respectively. This

operation is transparent to the client, who always sees any call to an object as a function call to the objects interfaces

as if that object were in-process. This consistency is a key benefit for COM clients as it can treat all objects identi-

cally regardless of their actual execution context. If you are interested in understanding how this transparency is

achieved, please see Chapter 7, ñCommunicating via Interfaces: Remotingò for more details. There you will find that

all clients do, in fact, always call an in-process object first, but in local and remote cases that in-process object is just

a proxy that takes care of generating a remote procedure call.

1 Identifying the Object Class

A central feature of COM is that a client can opaquely locate and dynamically load the specific piece code that

knows how to manipulate a specific class of object. This is accomplished through the COM-supplied implementation

locator services through which COM associates a class identifier, that is, CLSID, with the server module for that ob-

ject class. Therefore the COM Library is responsible for defining how this association occurs which usually involves

a system-wide persistent registry of CLSIDs and their corresponding servers. For example, under Microsoft Windows

the COM Library stores the pathnames of in-process server DLLs and local server EXEs in the system registry under

the text string of the objectôs CLSID.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 88 DRAFT: October 24, 1995

 All Rights Reserved

The practical upshot of all this for client applications is that the client need not know nor care how this information is

maintained or how the COM Library performs the association from CLSID to server. In the same manner the client

need not perform any additional work to establish communication with a local or remote object as such steps are also

handled in COM transparently.

This does leave the question of how the client determines what CLSID to hand to COM in the first place. There is no

single answer, for it varies from situation to situation. In some cases the object to use has a well-known and fixed

CLSID that is compiled into the client application. In other cases the client may have a constant text string (compiled,

that is) that represents a CLSID and uses some means to associate that name with a CLSID. Another example may be

that the client has some previously saved information that directly or indirectly translates to a CLSID, such as a piece

of storage (where the CLSID is serialized into a stream) or a moniker (where the CLSID is implied by the data which

the moniker references). Finally, there may be some means through which the client displays a list of available ob-

jects to the end-user where each item in the list corresponds to a specific CLSID. In such cases the list is generated by

browsing the registry for all existing object classes. Other examples are clearly possible, particularly in network

situations.

2 Creating the Object

Given a CLSID the client must now create an object of that class in order to make use of its services. It does so using

two steps:

1. Obtain the ñclass factoryò for the CLSID.

2. Ask the class factory to instantiate an object of the class, returning an interface pointer to the client.

After these steps, illustrated in Figure 5-1, the client is free to do whatever it wishes with the object through whatever

interfaces the object supports. In fact, everything done with the object is accomplished through calls to interface

member functionsðAPIs that seems to affect objects through other means are merely wrappers to common se-

quences of interface calls.

Before examining each of these steps, letôs take a look at what a class factory is in the first place.

.1 The Class Factory Object: IClassFactory Interface

The class factory is another object itself that exists to manufacture objects (hence the name ñfactoryò) of a specific

class (hence the qualifier ñclassò).47 A class factory object is implemented by a server module, either a DLL or EXE,

and supports the IClassFactory interface described below. For the purposes of COM Clients, the IClassFactory interface

is and interface on an object used by a client. For information on implementation, see Chapter 6, ñCOM Servers.ò

Class Factory

Object

Server

Client

(1) ñCreate

an Objectò

(2) Manufacture

Object

(3) Return new

interface pointer

to client

Figure 5-1 A client asks a class factory in the server to create an object.

The IClassFactory interface is implemented by COM servers on a ñclass factoryò object for the purpose of creating

new objects of a particular class. The interface also provides for a COM client to keep the server in memory even

when it is not servicing any object. A class factory has a one-to-one correspondence with a CLSID (although actual

implementations can be made generic to service multiple classes if the COM server so chooses).

[

47 Note that IClassFactory would be more appropriately be named IObjectFactoy since using it one creates objects, not classes. But IClassFactory remains

for historical reasons.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 89 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

 object,

 uuid(00000001-0000-0000-C000-000000000046), // IID_IClassFactory

 pointer_default(unique)

]

interface IClassFactory : IUnknown

{

 HRESULT CreateInstance([in] IUnknown * pUnkOuter, [in] REFIID iid, [out] void * ppv);

 HRESULT LockServer([in]BOOL fLock);

}

.1 IClassFactory::CreateInstance

HRESULT IClassFactory::CreateInstance(pUnkOuter, iid, ppvObject)

Create an uninitialized instance, that is, object, of the class associated with the class factory, returning an interface

pointer of type iid on the object to the caller in the out-parameter ppvObject.

If the object is being created as part of an aggregateðthat is, the client of the object in this case is also an object

server itselfðthen pUnkOuter contains the IUnknown pointer to the ñouter unknown.ò See ñObject Reusabilityò in

Chapter 6 for more information. Class implementations need to be consciously designed to be aggregatable and ac-

cordingly not all classes are so designed.

Argument Type Description

pUnkOuter IUnknown * The controlling unknown of the aggregate object if this object is being created as

part of an aggregate. If NULL, then the object is not being aggregated, which is

the case when the object is being created from a pure client. If non-NULL and the

class does not support aggregation, then the function returns
CLASS_E_NOAGGREGATION.

iid REFIID The identifier of the first interface desired by the caller through which it will

communicate with the object; usually the ñinitialization interface.ò

ppv void ** The place in which the first interface pointer is to be returned.

Return Value Meaning

S_OK Success. A new instance was created.
E_NOAGGREGATION Use of aggregation was requested, but this class does not support it.
E_OUTOFMEMORY Memory could not be allocated to service the request.
 E_UNEXPECTED An unknown error occurred.

.2 IClassFactory::LockServer

HRESULT IClassFactory::LockServer(fLock)

This function can be called by a client to keep a server in memory even when it is servicing no objects. Normally a

server will unload itself (an EXE server) or allow the COM library to unload it (a DLL server) when the server has

no objects left to serve. If the client so desires, it can lock the server in memory to prevent it from being loaded and

unloaded multiple times, which can improve performance of object instantiations. Most clients have no need to call

this function. It is present primarily for the benefit of sophisticated clients with special performance needs from cer-

tain classes.

It is an error to call LockServer(TRUE) and then call Release without first releasing the lock with LockServer(FALSE).

Whoever locks the server is responsible for unlocking it, and once the class factory is released, there is no mecha-

nism by which the caller can be guaranteed to later connect to the same class factory. All calls to

IClassFactory::LockServer must be counted, not only the last one. Calls will be balanced; that is, for every

LockServer(TRUE) call, there will be a LockServer(FALSE) call. If the lock count and the class object reference count are

both zero, the class object can be freed.

For more information on the use of LockServer, see the ñServer Managementò section below. For more information on

implementing this function, see Chapter 6 under ñThe Class Factory: Implementation and Exposure.ò

Argu ment Type Description

fLock BOOL True if a lock is being added to the class factory; false if one is being removed.

Return Value Meaning

S_OK Success.
E_UNEXPECTED An unknown error occurred.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 90 DRAFT: October 24, 1995

 All Rights Reserved

3 Obtaining the Class Factory Object for a CLSID

Now that we understand what a class factory is and what functions it performs through the IClassFactory interface we

can examine how a client obtains the class factory. This depends only slightly on whether the object in question is

in-process, local, or remote. For the most part, all cases are handled through the same implementation locator service

in the COM library and the same API functions. The implications are greater for servers as shown in Chapter 6.

For all objects on the same machine as the client, including object handlers, the client generates a call to the COM

Library function CoGetClassObject. This function, described below, does whatever is necessary to obtain a class fac-

tory object for the given CLSID and return one of that class factoryôs interface pointers to the client. After that the

client may calls IClassFactory::CreateInstance to instantiate objects of the class.

We say here that the client must generate a call to CoGetClassObject because it is not always necessary to call this

function directly. When a client only wants to create a single object of a given class there is no need to go through

the process of calling CoGetClassObject, IClassFactory::CreateInstance, and IClassFactory::Release. Instead it can use API

function CoCreateInstance described below which conveniently wraps these three more fundamental steps into one

function.

.1 CoGetClassObject

HRESULT CoGetClassObject(clsid, grfContext, pServerInfo, iid, ppv)

Locate and connect to the class factory object associated with the class identifier clsid. If necessary, the COM Library

dynamically loads executable code in order to accomplish this. The interface by which the caller wishes to talk to the

class factory object is indicated by iid; this is usually IID_IClassFactory but can, of course, be any other object-creation

interface.48 The class factoryôs interface is returned in ppv with one reference count on it on behalf of the caller, that

is, the caller is responsible for calling Release after it has finished using the class factory object.

Different pieces of code can be associated with one CLSID for use in different execution contexts such as in-process,

local, or object handler. The context in which the caller is interested is indicated by the grfContext parameter, a group

of flags taken from the enumeration CLSCTX:

typedef enum tagCLSCTX {

 CLSCTX_INPROC_SERVER = 1,

 CLSCTX_INPROC_HANDLER = 2,

 CLSCTX_LOCAL_SERVER = 4,

 CLSCTX_REMOTE_SERVER = 16.

 } CLSCTX;

The several contexts are tried in the sequence in which they are listed here. Multiple values may be combined (using

bitwise OR) indicating that multiple contexts are acceptable to the caller:

#define CLSCTX_INPROC (CLSCTX_INPROC_SERVER | CLSCTX_INPROC_HANDLER)

#define CLSCTX_SERVER (CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER)

#define CLSCTX_ALL (CLSCTX_INPROC_SERVER | CLSCTX_INPROC_HANDLER | CLSCTX_LOCAL_SERVER |

CLSCTX_REMOTE_SERVER)

These context values have the following meanings which apply to all remote servers as well:

Value Action Taken by the COM Library

CLSCTX_INPROC_SERVER Load the in-process code (DLL) which creates and completely manages

the objects of this class. If the DLL is on a remote machine, invoke a

surrogate server as well to load the DLL.

CLSCTX_INPROC_HANDLER Load the in-process code (DLL) which implements client-side struc-

tures of this class when instances of it are accessed remotely. An object

handler generally implements object functionality which can only be

implemented from an in-process module, relying on a local server for

the remainder of the implementation.49

48 For example, the remoting architechture described in Chapter 7 uses a different type of ñfactoryò interface.
49 For example, in OLE 2, built on top of COM, there is an interface called IViewObject through which a client can ask an object to draw its graph-

ical presentation directly to a Windows device context (HDC) through IViewObject::Draw. However, an HDC cannot be shared between processes, so
this interface can only be implemented inside as part of an in-process object. When an object server wishes to provide optimized graphical out-

put but does not wish to completely implement the object in-process, it can use a lightweight object handler to implement just the drawing
functionality where it must reside, relying on the local server for the full object implementation.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 91 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

CLSCTX_LOCAL_SERVER Launch the separate-process code (EXE) which creates and manages the

objects of this class.50

CLSCTX_REMOTE_SERVER Launch the separate-process code (EXE) on another machine which

creates and manages objects of this class.

The COM Library should attempt to load in-process servers first, then in-process handlers, then local servers, then

remote servers. This order helps to minimize the frequency with which the library has to launch separate server ap-

plications which is generally a much more time-consuming operation than loading a DLL, especially across the net-

work.

When specifying CLSCTX_REMOTE_SERVER, the caller may pass a COMSERVERINFO structure to indicate the ma-

chine on which to run the server module, which is defined as follows:

typedef struct tagCOMSERVERINFO {

 OLECHAR *szRemoteSCMBindingHandle;

 } COMSERVERINFO;51

The COM Library implementation of this CoGetClassObject relies on the system registry to map the CLSID to the

server module to load or launch, but this process is opaque to the client application. If, however, COM cannot make

any association then the function fails with the code REGDB_E_CLASSNOTREG. If this function launches a server

application it must wait until that server registers its class factory or until a time-out occurs (duration determined by

COM, something on the order of a minute of processing time). See the CoRegisterClassObject function in Chapter 6

under ñExposing the Class Factory from Local Servers.ò

The arguments to this function are as follows:

Argument Type Description

clsid REFCLSID The class of the class factory to obtain.

grfContext DWORD The context in which the executable code is to run.

pServerInfo COMSERVERINFO* Identifies the machine on which to activate the executable code. Must be NULL

when grfContext does not contain CLSCTX_REMOTE_SERVER. When NULL and

grfContext contains CLSCTX_REMOTE_SERVER, COM uses the default machine

location for this class.

iid REFIID The interface on the class factory object desired by the caller.

ppv void ** The place in which to put the requested interface.

Return Value Meaning

S_OK Success.
REGDB_E_CLASSNOTREG An implementation of the requested class could not be located.
E_OUTOFMEMORY Memory could not be allocated to service the request.
E_UNEXPECTED An unknown error occurred.

The following code fragment demonstrates how a client would call CoGetClassObject and create an in-process in-

stance of the TextRender object with CLSID_TextRender using the class factory to request an IUnknown pointer for the

object. In this example the client is explicitly limiting COM to use only in-process servers:

IClassFactory * pCF;

IUnknown * pUnkObj;

HRESULT hr;

hr=CoGetClassObject(CLSID_TextRender, CLSCTX_INPROC_SERVER, NULL, IID_IClassFactory, (void *)pCF);

if (FAILED(hr))

 //Could not obtain class factory, creation fails completely.

/*

 * Create the object. If this call succeeds the pUnkObj will

 * be valid and have a reference count on it on behalf of the caller

 * which the caller must Release.

 */

50 In some cases the object server may already be running and may allow its class factory to be used multiple times in which case the COM

Library simply establishes another connection to the existing class factory in that server, eliminating the need to launch another instance of the
server applications entirely. While this can improve performance significantly, it is the option of the server to decide if its class factory is sin-

gle- or multiple-use. See the function CoRegisterClassObject in Chapter 6 for more information.
51 This abstraction is still under design.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 92 DRAFT: October 24, 1995

 All Rights Reserved

hr=pCF->CreateInstance(NULL, IID_IUnknown, (void *)pUnkObj);

//Caller must call Release regardless of CreateInstance result

pCF->Release();

if (FAILED(hr))

 //Object creation failed: interface may not be supported

/*

 * Now use the object in whatever capacity the caller desires.

 * The first step will be initialization.

 */

//Release the object when finished with it.

pUnkObj->Release();

Since the process of calling CoGetClassObject, IClassFactory::CreateInstance, and IClassFactory::Release is so common in

practice, the COM Library provides a wrapper API function for this sequence called CoCreateInstance. This allows the

client to avoid the whole issue of class factory objects entirely. However, CoCreateInstance only creates one object at

a time; if the client wants to create multiple objects of the same class at once, it is more efficient to obtain the class

factory directly and call IClassFactory::CreateInstance multiple times, avoiding excess calls to CoGetClassObject and
IClassFactory::Release.

.2 CoCreateInstance

HRESULT CoCreateInstance(clsid, pUnkOuter, grfContext, iid, ppvObj)

Create an uninitialized instance of the class clsid, asking for interface iid using the execution contexts given in

grfContext. If the object is being used as part of an aggregation then pUnkOuter contains a pointer to the controlling

unknown. These parameters behave as those of the same name in CoGetClassObject (clsid) and

IClassFactory::CreateInstance (pUnkOuter, grfContext, iid, ppv),

CoCreateInstance is simply a wrapper function for CoGetClassObject and IClassFactory that is implemented (conceptual-

ly) as follows:

HRESULT CoCreateInstance(REFCLSID clsid, IUnknown * pUnkOuter,

 DWORD grfContext, REFIID iid, void * ppvObj)

 {

 IClassFactory * pCF;

 HRESULT hr;

 hr=CoGetClassObject(clsid, grfContext, NULL, IID_IClassFactory, (void *)pCF);

 if (FAILED(hr))

 return hr;

 hr=pCF->CreateInstance(pUnkOuter, iid, (void *)ppv);

 pCF->Release();

 /*

 * If CreateInstance fails, ppv will be set to NULL. Otherwise

 * ppv has the interface pointer and hr contains NOERROR.

 */

 return hr;

 }

Argument Type Description

clsid REFCLSID The class of which an instance is desired

pUnkOuter IUnknown* The controlling unknown, if any.

grfContext DWORD The CLSCTX to be used.

iid REFIID The initialization interface desired

ppv void** The place at which to return the desired interface.

Return Value Meaning

S_OK Success.
Any error that can be returned from

CoGetClassObject or

IClassFactory::CreateInstance

Semantics as in those functions.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 93 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

E_UNEXPECTED An unknown error occurred.

.3 CoCreateInstanceEx

HRESULT CoCreateInstanceEx(clsid, pUnkOuter, grfContext, pServerInfo, dwCount, rgMultiQI)

Create an uninitialized instance of the class clsid on a specific machine, asking for a set of interface iids in pResult

using the execution contexts given in grfContext. If the object is being used as part of an aggregation then pUnkOuter

contains a pointer to the controlling unknown.

To help optimize round-trips to a remote machine during instantiation, this API allow the client to specify a set of

interfaces to return on the object via the rgMultiQI array of MULTI_QI structures, defined as follows:

typedef struct tagMULTI_QI {

 REFIID riid; // interface to return

 void* pvObj; // location to return interface pointer

 HRESULT hr; // location to return result of QueryInterface for riid

 } MULTI_QI;

The semantics of using this API and passing a MULTI_QI array are identical to the following sequence of operations,

but incur less overhead for the client, the server, and the network:

IClassFactory *pCF;

IUnknown *punk;

COMSERVERINFO csi;

CoGetClassObject(clsid, CLSCTX_SERVER, &csi, IID_IClassFactory, (void**)&pCF);

pCF->CreateInstance(NULL, IID_IUnknown, (void**)&punk);

for (DWORD i=0; i<dwCount; i++)

 rgMultiQI[I].hr = punk->QueryInterface(rgMultiQI[i].riid, &rgMultiQI[i].pvObj);

punk->Release();

Argument Type Description

clsid REFCLSID The class of which an instance is desired

pUnkOuter IUnknown* The controlling unknown, if any.

grfContext DWORD The CLSCTX to be used.

pServerInfo COMSERVERINFO* Identifies the machine on which to activate the executable code. Must be NULL

when grfContext does not contain CLSCTX_REMOTE_SERVER. When NULL and

grfContext contains CLSCTX_REMOTE_SERVER, COM uses the default machine

location for this class.

dwCount DWORD The number of MULTI_QI structures in the rgMultiQI array.

rgMultiQI MULTI_QI* An array of MULTI_QI structures. On input, each element should be cleared and

the riid member set to an IID being requested. On output, one or more of the in-

terfaces may be retrieved, and individual pvObj members will be non-NULL.

Return Value Meaning

S_OK Success.
CO_S_NOTALLINTERFACES Not all of dwCount interfaces requested in the MULTI_QI array were success-

fully retrieved. Examine individual pvObj members of MULTI_QI to determine

exactly which interfaces were returned.
Any error that can be returned from

CoGetClassObject or

IClassFactory::CreateInstance

Semantics as in those functions.

E_UNEXPECTED An unknown error occurred.

4 Initializing the Object

After the client has successfully created an object of a given class it must initialize that object. By definition, any

new object created using IClassFactory::CreateInstance (or variant or wrapper thereof) is uninitialized. Initialization

generally happens through a single call to a member function of the ñinitialization interface.ò This interface is usual-

ly the one requested by the client in its call to create the object, but this is not required. Before an object is initialized,

the only calls that are guaranteed to work on the object (besides the initializing functions themselves) are the

IUnknown functions (of any interface) unless otherwise explicitly specified in the definition of an interface. In addi-

tion, QueryInterface is only guaranteed to work for IUnknown and any initialization interface, but not guaranteed for a

non-initialization interface.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 94 DRAFT: October 24, 1995

 All Rights Reserved

Some objects will not require initialization before they are function through all of their interfaces. Those that do

require initialization will define, either explicitly through documentation of the object or implicitly through the sce-

narios in which the object is used, which member of which interface can be used for initialization.

For example, objects that can serialize their persistent data to a file will implement the IPersistFile interface (see ñPer-

sistent Storage Interfaces for Objectsò in Chapter 8). The function IPersistFile::Load, which instructs the object to load

its data from a file, is the initialization function and IPersistFile is the initialization interface. Other examples are ob-

jects that can serialize to storages or streams, where the objects implement the initialization interfaces IPersistStorage

or IPersistStream, respectively (again, see Chapter8). The Load functions in these interfaces are initialization functions

as is IPersistStorage::InitNew, which initializes a new object with storage instead of loading a previously saved version.

5 Managing the Object

Once an object is initialized, it is entirely up to the client to determine what it intends to do with that object. It is

often the case that the initializing interface is not the ñworkingò interface through which the client will primarily use

the object. The creation sequence only nets the client a single interface pointer that has a limited scope of functional-

ity. If the client wishes to perform an operation outside that scope, it must call the known interfaceôs QueryInterface

function to ask for another interface on the same object.

For example, say a client has created and initialized an object but now wishes to obtain a graphical presentation, say

a bitmap, from that object by calling IDataObject::GetData (see Chapter 10 for details on this function). The client must

call QueryInterface to obtain an IDataObject pointer before calling the function.

It is important to note that all operations on that object will occur through calls to the member functions of the ob-

jectôs various interfaces. Any additional API functions that the client might call to affect the object itself are usually

wrapper functions of common sequences of interface function calls. There simply is no other way to affect the object

other than through itôs interfaces.

Because a client must ask for an interface before it can possibly ask the object to perform the actions defined in the

interface, the client cannot ask the object to perform an action the object does not support. This is a primary strength

of the QueryInterface function as described in the early chapters of this document. Calling QueryInterface for access to

an objectôs functionality is not problematic nor inconvenient because the client usually makes the call specifically at

the point where the client wants to perform some action on the object. That is, clients generally do not call

QueryInterface for all possible interfaces after the object is created so as to have all the pointers on handðinstead, the

client calls QueryInterface before attempting to perform some action with the object.

In practice this means that the client must be prepared for the failure of a call to QueryInterface. Instead of being a

complete pain to implementation, such preparation defines a mechanism through which the client can make dynamic

choices based on the functionality of the object itself on an object-by-object basis.

For example, consider a client application that has created a number of objects and it now wants to save the applica-

tionôs state, which includes saving the state of each object. Letôs say the client is using structured storage for its na-

tive file representation, so its first choice will be to assign an individual storage element in that file for each object.

Each object can then store structured information itself and it indicates its ability to do by implementing the

IPersistStorage interface. However, some object may not know how to write to a storage but know how to write to a

stream and indicate the capability by implementing IPersistStream. Yet others may only know how to write infor-

mation to a file themselves and thus implement IPersistFile. Finally, some objects may not know how to serialize

themselves at all, but can provide a binary memory copy of the their native data through IDataObject.

In this case the clientôs strategy will be as follows: if an object supports IPersistStorage, then give it an IStorage in-

stance and ask it to save its data into it by calling IPersistStorage::Save. If that object does not provide such support,

check if it supports IPersistStream, and if so, create a client-controlled stream for it (in perhaps a separate cli-

ent-controlled storage element) and pass that IStream pointer to the object through IPersistStream::Save. If the object

does not support streams, then check for IPersistFile. If the object supports serialization to a file, then have the object

write its data into a temporary file by calling IPersistFile::Save, then make a binary copy of that file in a cli-

ent-controlled stream element within a client-controlled storage element. If all else fails, attempt to retrieve the ob-

jectôs binary data from IDataObject::GetData using the first format the object supports, and write that binary data into a

client-controlled stream in a client-controlled storage.

Code for such a strategy would be structured something like the following pseudo-code for a ñsave objectò function

in the client:

BOOL SaveObject(IUnknown * pUnkObj)

 {

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 95 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

 pUnkObj->QueryInterface(IID_IPersistStorage)

 if (success)

 {

 create a storage element for the object

 call IPersistStorage::Save

 call IPersistStorage::Release

 return TRUE

 }

 //All other cases use a client-controlled stream

 create a stream element for the object in some storage

 //IPersistStorage not supported, try IPersistStream

 pUnkObj->QueryInterface(IID_IPersistStream)

 if (success)

 {

 call IPersistStream::Save

 call IPersistStream::Release

 return TRUE

 }

 //IPersistStream not supported, try IPersistFile

 pUnkObj->QueryInterface(IID_IPersistFile)

 if (success)

 {

 //Save to a temp file

 call IPersistFile::Save("objdata.tmp");

 call IPersistFile::Release

 read data from temp file

 write data to the stream

 return TRUE

 }

 //All else failed, try IDataObject

 pUnkObj->QueryInterface(IID_IDataObject)

 if (success)

 {

 call IDataObject::EnumFormatEtc

 call IEnumFORMATETC to get the first format (assume it's native)

 call IEnumFORMATETC::Release

 call IDataObject::GetData for the format, asking for global memory

 call IDataObject::Release

 Lock global memory and write to stream

 Free global memory

 return TRUE

 }

 //Everything failed, so give up

 destroy stream we created: not using it.

 return FALSE

 }

In this example the client is prepared for many different types of objects and how they might provide persistent in-

formation (and using IDataObject::GetData here is stretching the concept somewhat, but shows that the client has many

choices). Based on the results of QueryInterface the client decides at run-time how to save each individual object.

Reloading these objects would be a similar procedure, but the client would know, from the structure of its storage

and other information it saved about the objects itself, which method to use to reload the object from the storage. The

client wants to insure that it uses the same method to load the object that it did for saving it originally, that is, use the

same interface instead of querying for the best one. The reason is that while the data was passively stored on disk, the

object that wrote that data might have been updated such that where it once only supported IPersistStream, for exam-

ple, it now supports IPersistStorage. In that case the client should ask it to load the data using IPersistStream::Load.

However, when the client goes to save the object again, it will now successfully find that the object supports

IPersistStorage and can now have the object save into a storage element instead. (The container would also insure that

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 96 DRAFT: October 24, 1995

 All Rights Reserved

the old client-controlled stream was deleted as it is no longer in use for that object.) This demonstrates how an object

can be updated and new interfaces supported without any recompilation on the part of existing clients while at the

same time suddenly working with clients on a higher level of integration than before. In order to remain compatible

the object must insure that it supports the older interfaces (such as IPersistStream) but is free to add new con-

tractsðnew interfaces such as IPersistStorageðas it wants to provide new functionality.

The point of this example, which is also true for clients that use any other interfaces an object might support in other

scenarios, is that the client is empowered to make dynamic decisions on a per-object basis through the QueryInterface

function. Containers programmed to be dynamic as such allow object to improve independently while insuring that

the container will work as goodðand generally betterðas it always has with any given object. All of this is due to

the powerful and important QueryInterface mechanism that for all intents and purposes is the single most important

aspect of true system component software.

6 Releasing the Object

The final operation required in a COM client when dealing with an object from some other server is to free that ob-

ject when the client no longer needs it. This is achieved by calling the Release member function of all interfaces ob-

tained during the course of using the object.

Recall that a function that creates or synthesizes a new interface pointer is responsible for calling AddRef through that

pointer before returning it to the caller of the function. This applies to the IClassFactory::CreateInstance function as well

as CoCreateInstance (and for that matter, CoGetClassObject, too, which is why you must call IClassFactory::Release after

creating the object). Therefore, as far as the client is concerned, the object will have a reference count of one after

creation. The object may, in fact, have a higher reference count if it is also being used from other clients as well, but

each client is only responsible and cognizant of the reference counts added on its behalf.

The other primary function that creates new interface pointers is QueryInterface. Every call the client makes to

QueryInterface to obtain another interface pointer will internally generate another call to AddRef in that object, incre-

menting the reference count. Therefore, in addition to calling Release through the interface pointer obtained in the

creation sequence, the client must also call Release through any interface pointer obtained from QueryInterface (this is

illustrated in the pseudo-code of the previous section).

The bottom line is that the client is responsible for matching any operation that generates a call to AddRef through a

given interface pointer with a call to Release through that same interface pointer. It is not necessary to call Release in

the opposite order of calls to AddRef; it is just necessary to match the pairs. Failure to do so will cause memory leaks

as objects are not freed and servers are not allowed to shut down properly. This is no different that forgetting to free

memory obtained through malloc.

Finally, although the client matches its calls to AddRef and Release, the actual object may still continue to run and the

server may continue to execute as well without any objects in service. The object will continue if other clients are

using that same object and thus have reference counts on it. Only when all clients have released their references will

that object free itself. The server will, of course, continue to execute as long as there is an object to serve, but the

client does have some power over keeping a server running even without objects. That is the purpose of Server

Management functions in COM.

7 Server Management

As mentioned in previous sections, a client has the ability to manage servers on the server level to keep them running

even when they are not serving any objects. The clientôs primary mechanism for this is the IClassFactory::LockServer

function described above. By calling this function with the TRUE parameter, the client places a ólockô on the server.

As long as the server either has objects created or has one or more locks on it, the server will continue to execute.

When the server detects a zero object and zero lock condition, it can unload itself (which differs between DLL and

EXE servers, as described in Chapter 7).

A client can place more than one lock on a server by calling IClassFactory::LockServer(TRUE) more than once. Each call

to LockServer(TRUE) must be matched with a call to LockServer(FALSE)ðthe server maintains a lock count for the

server as it maintains a reference count for its served objects. But while AddRef and Release affect objects, LockServer

affects the server itself.

LockServer affects all serversðin-process, local, and remoteðidentically. The client does have some additional con-

trol over in-process objects as it normally would for other DLLs through the functions CoLoadLibrary,

CoFreeUnusedLibraries, and CoFreeAllLibraries, as described below. Normally only CoFreeUnusedLibraries is called from a

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 97 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

client whereas the others are generally used inside the COM Library to implement other API functions. In addition,

the COM Library supplies one additional function that has meaning in this context, CoIsHandlerConnected, that tells

the container if an object handler is currently working in association with a local server as described in its entry be-

low.

.1 CoFreeUnusedLibraries

void CoFreeUnusedLibraries(void)

This function and unloads any DLLs that have been loaded as a result of COM object creation calls but which are no

longer in use. Client applications can call this function periodically to free up resources.

.2 CoIsHandlerConnected

BOOL CoIsHandlerConnected(pUnk)

Determines if the specified handler is connected to its corresponding object in a running local server. The result of

this function might be used in a client application to determine if certain operations might result in launching a server

application allowing the client to make performance decisions.

Argument Type Description

pUnk IUnknown * Specifies the object in question.

return value BOOL True if a handler is connected to a running server with the full object implemen-

tation, FALSE if the handler is not connected.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 98 DRAFT: October 24, 1995

 All Rights Reserved

6. COM Servers

As described in earlier chapters, a COM Server is some module of code, a DLL or an EXE, that implements one or

more object classes (each with their own CLSID). A COM server structures the object implementations such that

COM clients can create an use objects from the server using the CLSID to identify the object through the processes

described in Chapter 5.

In addition, COM servers themselves may be clients of other objects, usually when the server is using those other

objects to help implement part of its own objects. This chapter will cover the various methods of using an object as

part of another through the mechanisms of containment and aggregation.

Another feature that servers might support is the ability to emulate a different server of a different CLSID. The COM

Library provides a few API functions to support this capability that are covered at the end of this chapter.

If the server is an application, that is, an executable program, then it must follow all the requirements for a COM

Application as detailed in Chapter 4. If the server is a DLL, that is, an in-process server or an object handler, it must

at least verify the library version and may, if desired, insure that the COM Library is initialized. That aside, all serv-

ers generally perform the following operations in order to expose their object implementations:

1. Allocate a class identifierða CLSIDðfor each supported class and provide the system with a map-

ping between the CLSID and the server module.

2. Implement a class factory object with the IClassFactory interface for each supported CLSID.

3. Expose the class factory such that the COM Library can locate it after loading (DLL) or launching

(EXE) the server.

4. Provide for unloading the server when there are no objects being served and no locks on the server

(IClassFactory::LockServer).

Of course, there must be some object to serve, so the first section of this chapter discusses the basic structure of an

object and some considerations for design. The sections that follow then cover the functions involved in each of

these steps for the different styles of serversðDLL and EXEðwhich apply regardless of whether the server is run-

ning on a remote machine. Also included is a discussion of object handlers (special-case in-process objects) before

the discussion of aggregation. Note that no new interfaces are introduced in this chapter as the fundamental ones,

IUnknown and IClassFactory, have already been covered.

As far as the server is concerned, the COM Library exists to drive the serverôs class factory to create objects and to

handle remote method calls from clients in other processes or on other machines and to marshal the objectôs return

values back to the client. Whereas client applications are unaware of the objectôs execution context once the object is

created, the server is, of course, always aware of that context. An in-process object is always loaded into the clientôs

process space. A local or remote object always runs in a process other than the client, or on a different machine.

However, the actual object itself can be written such that it does not need to care about the execution context, leaving

the specifics to the structure of the server module instead. This chapter will cover one such strategy.

Finally, recall from the beginning of Chapter 5 that a client always makes a call into some in-process object whenev-

er it calls any interface member function. If the actual object in the server is local or remote, that object is merely a

proxy that generates the appropriate remote method call to the true object. This does not mean a server has to under-

stand RPC, however, as the server always sees these calls as direct calls from a piece of code in the server process.

The mechanism that achieves this, described in Chapter 7, ñCommunicating via Interfaces: Remoting,ò is that the

RPC call is picked up in the server process by an ñstubò object which translate the RPC information into the direct

call to the serverôs object. From the serverôs point of view, the client called it directly.

1 Identifying and Registering an Object Class

A major strength of COM is the use of globally unique identifiers to essentially name each object class that exists,

not only on the local machine but universally across all machines and all platforms. The algorithm that guarantees

this is encompassed in the COM Library function CoCreateGuid as described in Chapter 3. An object implementor

must obtain a GUID to assign to the object server as its CLSID for each implemented class.

.1 System Registry of Classes for the Local Machine

A CLSID to identify an object implementation is not very useful unless clients have a way of finding the CLSID. From

Chapter 5 we know that there are a number of ways a client may come to know a CLSID. First of all, that client may

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 99 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

be compiled to specifically depend on a specific CLSID, in which case it obtained the serverôs header files with the

DEFINE_GUID macros present. But for the most part, clients will want to obtain CLSIDs at run-time, especially when

that client displays a list of available objects to and end-user and creates an object of the selected type at the userôs

request. So there must be a way to dynamically locate and load CLSIDs for accessible objects.

Furthermore, there has to be some system-wide method for the COM Library to associate a given CLSID, regardless

of how the client obtained it, to the server code that implements that class. In other words, the COM Library requires

some persistent store of CLSID-to-server mappings that it uses to implement its locator services. It is up to the COM

Library implementor, not the implementor of clients or servers, to define the store and how server applications would

register their CLSIDs and server module names in that store.

The store must distinguish between in-process, local, and remote objects as well as object handlers in addition to any

environment-specific differences. The COM implementation on Microsoft Windows uses the Windows system reg-

istry (also called the registration database, or RegDB for short) as a store for such information. In that registry there

is a root key called ñCLSIDò (spelled out in those letters) under which servers are responsible to create entries that

point to their modules. Usually these entries are created at installation time by the applicationôs setup code, but can

be done at run-time if desired.

When a server is installed under Windows, the installation program will create a subkey under ñCLSIDò for each class

the server supports, using the standard string representation of the CLSID as the key name (including the curly brac-

es).52 So the first key that the TextRender object would create appears as follows (CLSID is the root key the indentation

of the object class implies a sub-key relationship with the one above it):

CLSID

 {12345678-ABCD-1234-5678-9ABCDEF00000} = TextRender Example

Depending on the type of same-machine server that handles this CLSID there will be one or more subkeys created

underneath the ASCII CLSID string:

Server Flavor Subkey Name Value

In-Process InprocServer32 Pathname of the server DLL

Local LocalServer32 Pathname of the server EXE

Object Handler InprocHandler32 Pathname to the object handler DLL.

So, for example, if the TextRender object was implemented in a TEXTREND.DLL, its entries would appear as:

CLSID

 {12345678-ABCD-1234-5678-9ABCDEF00000} = TextRender Example

 InprocServer32 = c:\objects\textrend.dll

If it were implemented in an application, TEXTREND.EXE, and worked with an object handler in TEXTHAND.DLL, the

entries would appear as:

CLSID

 {12345678-ABCD-1234-5678-9ABCDEF00000} = TextRender Example

 InprocHandler32 = c:\handlers\texthand.dll

 LocalServer32 = c:\objects\textrend.exe

Over time, the registry will become populated with many CLSIDs and many such entries.

.2 Remote Objects: AtBits Key

As described in the last section, a prerequisite to server implementation is generating a CLSID for that server. This

CLSID is registered in the system registry and referenced in the server code. The full path name of the server DLL or

EXE is registered in association with the CLSID.

The remote server can actually run either on the machine where the server code is stored or on the same machine as

its connected client (assuming the class is registered on the remote machine and there is a compatible binary image

available). Servers that use the default security provided with the system must run where its client is running. To

indicate the mode of operation, the Microsoft Windows implementation of COM includes the subkey ñAtBitsò that is

registered along with the serverôs CLSID. To register a server to run where the persistent state of the object is stored,

set AtBits to ñY.ò To register the server to run where the client is running, either set it to ñNò or leave the attribute out

altogether. The default is to run the server where the client is running. The registration example below shows how

the TextRender object would allow itself to be activated remotely.

CLSID

52 Under Microsoft Windows, this key is created using the standard Windows API for registry manipulation. Other COM implementations may
include their own functions as necessary, as long as itôs consistent on a given platform. Such functions are not part of this specification

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 100 DRAFT: October 24, 1995

 All Rights Reserved

 {12345678-ABCD-1234-5678-9ABCDEF00000} = TextRender Example

 LocalServer = c:\objects\textrend.exe

 AtBits = Y

.3 Self-Registering Servers

COM servers which are installed as part of an application setup program are usually registered by the setup program.

However, to facilitate the registration of smaller grained servers, the notion of a self-registering server is introduced.

.1 Self-Registering DLL's

In-process COM servers (DLLôs on the Windows and Macintosh platforms) support self-registration through several

DLL entry points with well-known names. The DLL entry points for registering and unregistering a server are de-

fined as follows:

HRESULT DllRegisterServer(void);

HRESULT DllUnregisterServer(void);

Both of these entry points are required for a DLL to be self-registering. The implementation of the DllRegisterServer

entry point adds or updates registry information for all the classes implemented by the DLL. The DllUnregisterServer

entry point removes its information from the registry.

.2 Self-Registering EXE's

There isn't an easy way for EXE's to publish entry points with well-known names, so a direct translation of

DllRegisterServer isn't possible. Instead, EXEôs support self-registration using special command line flags. EXE's that

support self-registration must mark their resource fork in the same way as DLL's, so that the EXEôs support for the

command line flags is detectable. Launching an EXE marked as self-registering with the /REGSERVER command line

argument should cause it to do whatever OLE installation is necessary and then exit. The /UNREGSERVER argument

is the equivalent to DllUnregisterServer. The /REGSERVER and /UNREGSERVER strings should be treated

case-insensitively, and that the character ó-ó can be substituted for ó/ô.

Other than guaranteeing that it has the correct entry point or implements the correct command line argument, an

application that indicates it is self-registering must build its registration logic so that it may be called any number of

times on a given system even if it is already installed. Telling it to register itself more than once should not have any

negative side effects. The same is true for unregistering.

On normal startup (without the /REGSERVER command line option) EXE's should call the registration code to make

sure their registry information is current. EXE's will indicate the failure or success of the self-registration process

through their return code by returning zero for success and non-zero for failure.

.3 Identifying Self-Registering Servers

Applications need to check to see if a given server module is self-registering without actually loading the DLL or

EXE for performance reasons and to avoid possible negative side-affects of code within the module being executed

without the module first being registered. To accomplish this, the DLL or EXE must be tagged with a version re-

source that can be read without actually causing any code in the module to be executed. On Windows platforms,

this involves using the version resource to hold a self-registration keyword. Since the VERSIONINFO section is

fixed and cannot be easily extended, the following string is added to the "StringFileInfo", with an empty key value:

VALUE "OLESelfRegister", ""

For example:

VS_VERSION_INFO VERSIONINFO

 FILEVERSION 1,0,0,1

 PRODUCTVERSION 1,0,0,1

 FILEFLAGSMASK VS_FFI_FILEFLAGSMASK

#ifdef _DEBUG

 FILEFLAGS VS_FF_DEBUG|VS_FF_PRIVATEBUILD|VS_FF_PRERELEASE

#else

 FILEFLAGS 0 // final version

#endif

 FILEOS VOS_DOS_WINDOWS16

 FILETYPE VFT_APP

 FILESUBTYPE 0 // not used

BEGIN

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 101 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

 BLOCK "StringFileInfo"

 BEGIN

 BLOCK "040904E4" // Lang=US English, CharSet=Windows Multilingual

 BEGIN

 VALUE "CompanyName", "\0"

 VALUE "FileDescription", "BUTTON OLE Control DLL\0"

 VALUE "FileVersion", "1.0.001\0"

 VALUE "InternalName", "BUTTON\0"

 VALUE "LegalCopyright", "\0"

 VALUE "LegalTrademarks", "\0"

 VALUE "OriginalFilename","BUTTON.DLL\0"

 VALUE "ProductName", "BUTTON\0"

 VALUE "ProductVersion", "1.0.001\0"

 VALUE "OLESelfRegister", "" // New keyword

 END

 END

 BLOCK "VarFileInfo"

 BEGIN

 VALUE "Translation", 0x409, 1252

 END

END

To support self-registering servers, an application can add a "Browse" button to its object selection user interface,

which pops up a standard File Open dialog. After the user chooses a DLL or EXE the application can check to see if

it is marked for self-registration and, if so, call its DllRegisterServer entry point (or execute the EXE with the

/REGSERVER command line switch). The DLL or EXE should register itself at this point.

2 Implementing the Class Factory

The existence of a CLSID available to clients implies that there is a class factory that is capable of manufacturing

objects of that class. The server, DLL or EXE, associated with the class in the registry is responsible to provide that

class factory and expose it to the COM Library to make COMôs creation mechanisms work for client. The specific

mechanisms to expose the class factory is covered shortly, but first, letôs examine how a class factory may be im-

plemented53.

.1 Defining the Class Factory Object

First of all, you need to define an object that implements the IClassFactory interface (or other factory-type interface if

applicable). As you would define any other object, you can define a class factory. The following is an example class

factory for our TextRender objects in C++:

class CTextRenderFactory : public IClassFactory

 {

 protected:

 ULONG m_cRef;

 public:

 CTextRenderFactory(void);

 ~CTextRenderFactory(void);

 //IUnknown members

 HRESULT QueryInterface(REFIID, pLPVOID);

 ULONG AddRef(void);

 ULONG Release(void);

 //IClassFactory members

 HRESULT CreateInstance(IUnknown *, REFIID iid, void **ppv

 HRESULT LockServer(BOOL);

 };

Implementing the member functions of this object are fairly straightforward. AddRef and Release do their usual busi-

ness, with Release calling delete this when the count is decremented to zero. Note that the zero-count event in Re-

lease has no effect other than to destroy the objectðit does not cause the server to unload as that is the prerogative of

LockServer. In any case, the QueryInterface implementation here will return pointers for IUnknown and IClassFactory.

53 Note that the example code given below illustrates one of many ways a class factory object can be implemented.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 102 DRAFT: October 24, 1995

 All Rights Reserved

.1 IClassFactory::CreateInstance

The class factory-specific functions are really all that are interesting. CreateInstance in this example will create an

instance of the CTextRender object and return an interface pointer to it as shown below. Note that if pUnkOuter is

non-NULL, that is, another object is attempting to aggregate, this code will fail with CLASS_E_NOAGGREGATION

(this limitation will be revisited when later when aggregation is discussed).

//A global variable that counts objects being served

ULONG g_cObj=0;

HRESULT CTextRenderFactory::CreateInstance(IUnknown * pUnkOuter, REFIID iid, void ** ppv) {

 CTextRender * pObj;

 HRESULT hr;

 *ppv=NULL;

 hr=E_OUTOFMEMORY;

 if (NULL!=pUnkOuter)

 return CLASS_E_NOAGGREGATION;

 //Create the object passing function to notify on destruction.

 pObj=new CTextRender(pUnkOuter, ObjectDestroyed);

 if (NULL==pObj)

 return hr;

 [Usually some other object initialization done here]

 //Obtain the first interface pointer (which does an AddRef)

 hr=pObj->QueryInterface(iid, ppv);

 //Kill the object if initial creation or FInit failed.

 if (FAILED(hr))

 delete pObj;

 else

 g_cObj++;

 return hr;

 }

There are two interesting points to this code, which is fairly standard for server implementations. First of all, note the

call to the objectôs QueryInterface after creation. This accomplishes two things: first, since objects are generally con-

structed with a reference count of zero (common practice) then this QueryInterface call, if successful, has the effect of

calling AddRef as well, making the object have a reference count of one. Second, it lets the object determine if it sup-

ports the interface requested in iid and if it does, it fills in ppv for us.

The second key point is that COM defines no standard mechanism for counting instantiated objects (there is no need

for such a generic service), so this implementation example maintains a count of the objects in service using the

global variable g_cObj. This count generally needs to be global so that other global functions can access it (see

ñProviding for Server Unloadingò below). When CreateInstance successfully creates a new object it increments this

count. When an object (not the class factory but the one the class factory creates) destroys itself in itôs implementa-

tion of CTextRender::Release, it should decrement this count to match the increment in CreateInstance.

It is not necessary, however, for the object to have direct access to this variable, and there are techniques to avoid

such access.. The example above passes a pointer to a function called ObjectDestroyed to the CTextRender constructor

such that when the object destroys itself in itôs Release it will call ObjectDestroyed to affect the serverôs object count:

void ObjectDestroyed(void) {

 g_cObj--;

 [Initiate unloading if g_cObj is zero and there are no locks]

 return;

 }

CTextRender::CTextRender(void (* pfnDestroy)(void)) {

 m_cRef=0;

 m_pfnDestroy=pfnDestroy;

 [Other initialization]

 return;

 }

ULONG CTextRender::Release(void) {

 ULONG cRefT;

 cRefT=--m_cRef;

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 103 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

 if (0L==m_cRef) {

 if (NULL!=m_pfnDestroy)

 (*m_pfnDestroy)();

 delete this;

 }

 return cRefT;

 }

The object might also be given a pointer to the class factory object itself (which the object will call AddRef through,

of course) that accomplishes the same thing. Regardless of the design, the point is that the object can be designed so

as to be unaware of the exact object counting mechanism, having instead some mechanism to notify the server as a

whole about the destroy event. A standard mechanism for this is not part of COM.

You might have noticed that the ObjectDestroyed function above contained a note that if there are no objects and no

locks on the server, then the server can initiate unloading. What really happens here depends on the type of server,

DLL or EXE, and will be covered under ñProviding for Server Unloading.ò

.2 IClassFactory::LockServer

The other interesting member function of a class factory is LockServer. Here the server increments of decrements a

lock count depending on the fLock parameter. If the last lock is removed and there are no objects in server, the server

initiates unloading which again, is specific to the type of server and a topic for a later section. In any case, COM does

not define a standard method for tracking the lock count. Since other code outside of the class factory may need

access to the lock count, a global variable works well:

//Global server lock count.

ULONG g_cLock=0;

The implementation of LockServer is correspondingly simple:

HRESULT CTextRenderFactory::LockServer(BOOL fLock)

 {

 if (fLock)

 g_cLock++;

 else

 {

 g_cLock--;

 [Initiate unloading if there are no objects and no locks]

 }

 return NOERROR;

 }

It is perfectly reasonable to double the use of g_cObj for counting locks as well as objects. You might want to keep

them separate for debugging purposes.

3 Exposing the Class Factory

With a class factory implementation the server must now expose it such that the COM Library can locate the class

factory from within CoGetClassObject after it has loaded the DLL54 server or launched the EXE server. The exact

method of exposing the class factory differs for each server type. The following sections cover each type in detail

which apply to DLLs and EXEs running on the local or remote machine in relation to the client. There are also some

considerations for DLL servers running remotely under a surrogate server that are covered in this section.

.1 Exposing the Class Factory from DLL Servers

To expose its class factory, an in-process server only needs to export55 a function explicitly named DllGetClassObject.

The COM Library will attempt to locate this function in the DLLôs exports56 and call it from within CoGetClassObject

when the client has specified CLSCTX_INPROC_SERVER. Note that a DLL server can in addition expose a class fac-

tory at a later time using the function CoRegisterClassObject discussed for EXE servers below. This would only be

used after the DLL was already loaded for some other reason.

54 Again, the term DLL is used generically to describe any shared library as supported by a given COM platform.
55 Under Microsoft Windows this means listing the function in the EXPORTS section of a module definitions file or using the __declspec(dllexport)

keyword at compile-time. Other platforms may differ as to requirements here, but in any case the function must be visible to other modules
within the same process, but not across processes.

56 Under Windows, CoGetClassObject, after loading the DLL with CoLoadLibrary, call the Windows API GetProcAddress(ñDllGetClassObjectò) to obtain the
pointer to the actual function in the DLL.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 104 DRAFT: October 24, 1995

 All Rights Reserved

.1 DllGetClassObject

HRESULT DllGetClassObject(clsid, iid, ppv)

This is not a function in the COM Library itself; rather, it is a function that is exported from DLL servers.

In the case that a call to the COM API function CoGetClassObject results in the class object having to be loaded from a

DLL, CoGetClassObject uses the DllGetClassObject that must be exported from the DLL in order to actually retrieve the

class.

Argument Type Description

clsid REFCLSID The class of the class factory being requested.

iid REFIID The interface with which the caller wants to talk to the class factory. Most often

this is IID_IClassFactory but is not restricted to it.

ppv void ** The place in which to put the interface pointer.

Return Value Meaning

S_OK Success.
E_NOINTERFACE The requested interface was not supported on the class object.
E_OUTOFMEMORY Memory could not be allocated to service the request.

E_UNEXPECTED An unknown error occurred.

Note that since DllGetClassObject is passed the CLSID, a single implementation of this function can handle any number

of classes. That also means that a single in-process server can implement any number of classes. The implementation

of DllGetClassObject only need create the proper class factory for the requested CLSID.

Most implementation of this function for a single class look very much like the implementation of

IClassFactory::CreateInstance as illustrated in the code below:

HRESULT DllGetClassObject(REFCLSID clsid, REFIID iid, void **ppv) {

 CTextRenderFactory * pCF;

 HRESULT hr=E_OUTOFMEMORY;

 if (!CLSID_TextRender!=clsid)

 return E_FAIL;

 pCF=new CTextRenderFactory();

 if (NULL==pCF)

 return E_OUTOFMEMORY;

 //This validates the requested interface and calls AddRef

 hr=pCF->QueryInterface(iid, ppv);

 if (FAILED(hr))

 delete pCF;

 else

 ppv=pCF;

 return hr;

 }

As is conventional with object implementations, including class factories, construction of the object sets the refer-

ence count to zero such that the initial QueryInterface creates the first actual reference count. Upon successful return

from this function, the class factory will have a reference count of one which must be released by the caller (COM or

the client, whoever gets the interface pointer).

The structure of a DLL server with its object and class factory is illustrated in Figure 6-1 below. This figure also

illustrates the sequence of calls and events that happen when the client executes the standard object creation se-

quence of CoGetClassObject and IClassFactory::CreateInstance.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 105 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

COM

CoGetClassObject

 Look up class in regDB

 Look up DLL in regDB

 CoLoadLibrary on DLL

 GetProcAddress on

 DllGetClassObject

 Return class factory

 pointer to user

Client DLL

Call CoGetClassObject

Call CreateInstance

Use object

DllGetClassObject

 Create class factory

 Return IClassFactory

1

IClassFactory Class Factory:

creates Object

Object

Object

Interfaces

2

3
4

5

6

7

8

9

10

Figure 6-1: Creation sequence of an object from a DLL server.

Function calls not in COM are from the Windows API.

.2 Exposing the Class Factory from EXE Servers

To expose a class factory from a server application is a different matter than for a DLL server for the reason that the

application executes in a different process from the client. Thus, the COM Library cannot just obtain a pointer to an

exported function and call that function to retrieve the class factory.

When COM launches an application from within CoGetClassObject it must wait for that application to register a class

factory for the desired CLSID through the function CoRegisterClassObject.57 Once that class factory appears to COM

it can return an interface pointer (actually a pointer to the proxy) to the client. CoGetClassObject may time out if the

server application takes too long.

The server can differentiate between times it is launched stand-alone and when it is launched from within COM.

When COM launches the application it includes a switch ñ/Embeddingò58 on the serverôs command line. If the flag is

present, the server must register its class factory with CoRegisterClassObject. If the flag is absent, the server may or

may not choose to register depending on the object class.

Note that a server application can support any number of object classes by calling CoRegisterClassObject on startup. In

fact, a server must register all supported class factories because the application is not told which CLSID was requested

in the client.

Where CoRegisterClassObject registers a servers factories with COM on startup, the function CoRevokeClassObject

unregisters those same factories on application shutdown so they are no longer available, meaning COM must launch

the server again for those class factories. Each call to CoRegisterClassObject must be matched with a call to

CoRevokeClassObject.

.1 CoRegisterClassObject

HRESULT CoRegisterClassObject(clsid, pUnk, grfContext, grfFlags, pdwRegister)

Registers the specified server class factory identified with pUnk with COM in order that it may be connected to by

COM Clients. When a server application starts, it creates each class factory it supports and passes them to this func-

tion. When a server application exits, it revokes all its registered class objects with CoRevokeClassObject.

Note that an in-process object could call this function to expose a class factory only when the DLL is already loaded

in another process and did not want to expose a class factory until it was loaded for some other reason.

The grfContext flag identifies the execution context of the server and is usually CLSCTX_LOCAL_SERVER. The grfFlags

is used to control how connections are made to the class object. Values for this parameter are the following:

57 This function is called in the COM Library loaded in the serverôs process space so it actually establishes the remote proxy and stub necessary to

perform remote procedure calls.
58 Case-insensitive. This name originated in OLE 1.0 and has been maintained for such historical reasons and compatibility.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 106 DRAFT: October 24, 1995

 All Rights Reserved

typedef enum tagREGCLS

 {

 REGCLS_SINGLEUSE = 0,

 REGCLS_MULTIPLEUSE = 1,

 REGCLS_MULTI_SEPARATE = 2

 } REGCLS;

Value Description

REGCLS_SINGLEUSE Once one client has connected to the class object with CoGetClassObject, then the

class object should be removed from public view so that no other clients can

similarly connect to it; new clients will use a new instance of the class factory,

running a new copy of the server application if necessary. Specifying this flag

does not affect the responsibility of the server to call CoRevokeClassObject on

shutdown.
REGCLS_MULTIPLEUSE Many CoGetClassObject calls can connect to the same class factory.

When a class factory is registered from a local server (grfContext is

CLSCTX_LOCAL_SERVER) and grfFlags includes REGCLS_MULTIPLEUSE,

then it is the case that the same class factory will be automatically also registered

as the in-process server (CLSCTX_IN-PROC_SERVER) for its own process
REGCLS_MULTI_SEPARATE The same as REGCLS_MULTIPLEUSE, except that registration as a local server

does not automatically also register as an in-process server in that same process

(or any other, for that matter).

Thus, registering as

CLSCTX_LOCAL_SERVER, REGCLS_MULTIPLEUSE

is the equivalent to registering as

(CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER), REGCLS_MULTI_SEPARATE

but is different than registering as

CLSCTX_LOCAL_SERVER, REGCLS_MULTI_SEPARATE.

By using REGCLS_MULTI_SEPARATE, an object implementation can cause different class factories to be used accord-

ing to whether or not it is being created from within the same process as it is implemented.

The following table summarizes the allowable flag combinations and the registrations that are effected by the various

combinations:

 REGCLS_-

SINGLEUSE

REGCLS_-

MULTIPLEUSE

REGCLS_-MULTI_SEPAR

ATE

Other

CLSCTX_IN-PR

OC_SERVER
error In-Process In-Process error

CLSCTX_LO-CA

L_SERVER
Local In-Process/Local Just Local error

Both of the above error In-Process/Local In-Process/Local error

Other error error error error

The key difference is in the middle columns and the middle rows. In the REGCLS_MULTIPLEUSE column, they are the

same (registers multiple use for both InProc and local); in the REGCLS_MULTI_SEPARATE column, the local server

case is local only.

The arguments to this function are as follows:

Argument Type Description

rclsid REFCLSID The CLSID of the class factory being registered.

pUnk IUnknown * The class factory whose availability is being published.

grfContext DWORD As in CoGetClassObject.

grfFlags DWORD REGCLS values that control the use of the class factory.

pdwRegister DWORD * A place at which a token is passed back with which this registration can be re-

voked in CoRevokeClassObject.

Return Value Meaning

S_OK Success.
CO_E_OBJISREG Error. The indicated class is already registered.
E_OUTOFMEMORY Memory could not be allocated to service the request.

E_UNEXPECTED An unknown error occurred.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 107 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

.2 CoRevokeClassObject

HRESULT CoRevokeClassObject(dwRegister)

Informs the COM Library that a class factory previously registered with CoRegisterClassObject is no longer available

for use. Server applications call this function on shutdown after having detected the necessary unloading conditions.

¶ There are no instances of the class in existence, that is, the object count is zero.

¶ The class factory has a zero number of locks from IClassFactory::LockServer.

¶ The application servicing the class object is not showing itself to the user (that is, not under user control)

When, subsequently, the reference count on the class object reaches zero, the class object can be destroyed, allowing

the application to exit.

Argument Type Description

dwRegister DWORD A token previously returned from CoRegisterclassObject.

Return Value Meaning

S_OK Success.

E_UNEXPECTED An unknown error occurred.

The structure of a server application with its object and class factory is illustrated in Figure 6-2. This figure also

illustrates the sequence of calls and events that happen when the client executes the standard object creation se-

quence of CoGetClassObject and IClassFactory::CreateInstance.

COM

CoGetClassObject

 Look up class in regDB

 Look up EXE in regDB

 WinExec on EXE

 Return class factory

 pointer to user

Client EXE

Call CoGetClassObject

Call CreateInstance

Use object

WinMain

 CoInitialize

 Create class factory

 CoRegisterClassObject

 passing IClassFactory

 Yield

1

IClassFactory
Class Factory:

creates Object

Object

Object Interfaces

2
3

4

5

6

7

8

9

Figure 6-2: Creation sequence of an object from a server application.

Function calls not in COM are from the Windows API.

Compare this figure with DLL server Figure 6-1 in the previous section. Youôll notice that the structure of the server

is generally the same, that is, both have their object and class factory. Youôll also notice that the creation sequence

from the clientôs point of view is identical. Again, once the client determines the CLSID of the desired object that

client leaves the specifics up to CoGetClassObject. The only differences between the two figures occur inside the

COM Library and the specific means of exposing the class factory from the server (along with the unloading mecha-

nism).

Finally, CoRegisterClassObject and CoRevokeClassObject along with when a server calls them demonstrate why a refer-

ence count on the class factory is insufficient to keep a server in memory and why IClassFactory::LockServer exists.

CoRegisterClassObject must, in order to be implemented properly, hold on to the IUnknown pointer passed to it (that is,

the class factory). The reference counting rules state that CoRegisterClassObject must call AddRef on that pointer ac-

cordingly. This reference count can only be removed inside CoRevokeClassObject.

However, CoRevokeClassObject is only called on application shutdown and not at any other time. How does the server

know when to start its shutdown sequence? Since it has to be in the process of shutting down to have the final refer-

ence counts on the class factory released through CoRevokeClassObject, it cannot use the reference count to determine

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 108 DRAFT: October 24, 1995

 All Rights Reserved

when to start the shutdown process in the first place. Therefore there has to be another mechanism through which

shutdown is controlled which is IClassFactory::LockServer.

4 Providing for Server Unloading

When a server has no objects to serve, has no locks, and is not being controlled by an end user (which applies gener-

ally to server applications with user interface), then the server has no reason to stay loaded in memory and should

provide for unloading itself. This unloading provision differs between server types (DLL and EXE, but no difference

for remote servers) as much as class factory registration because whereas a server application can simply terminate

itself, an in-process DLL must wait for someone else to explicitly unload it. Therefore the mechanisms for unloading

are different and are covered separately in the following sections.

.1 Unloading In-Process Servers

As mentioned above, a DLL must wait for someone else to explicitly unload it. The server must, however, have a

mechanism through which it indicates whether or not it should be unloaded. That mechanism is a function with the

name DllCanUnloadNow that is exported in the same manner as DllGetClassObject.

.1 DllCanUloadNow

HRESULT DllCanUnloadNow(void)

DllCanUnloadNow is not provided by COM. Rather, it is a function implemented by and exported from DLLs support-

ing the Component Object Model. DllCanUnloadNow should be exported from DLLs designed to be dynamically load-

ed in CoGetClassObject or CoLoadLibrary calls. A DLL is no longer in use when there are no existing instances of clas-

ses it manages; at this point, the DLL can be safely freed by calling CoFreeUnusedLibraries. If the DLL loaded by

CoGetClassObject fails to export DllCanUnloadNow, the DLL will only be unloaded when CoUninitialize is called to re-

lease the COM libraries.

If this function returns S_OK, the duration within which it is in fact safe to unload the DLL depends on whether the

DLL is single or multi-thread aware. For single thread DLLs, it is safe to unload the DLL up until such time as the

thread on which DllCanUnloadNow was invoked causes it to be otherwise (objects created, for example).

Return Value Meaning

S_OK The DLL may be unloaded now.
S_FALSE The DLL should not be unloaded at the present time.

.2 Unloading EXE Servers

A server application is responsible for unloading itself, simply by terminating and exiting its main entry function59,

when the shutdown conditions are met, including whether or not the user has control. In the ongoing example of this

chapter, this would involve detecting the proper shutdown conditions whenever an object is destroyed (in the sug-

gested ObjectDestroyed function) or whenever the last lock is removed (in IClassFactory::LockServer).

//User control flag

BOOL g_fUser=FALSE;

void ObjectDestroyed(void) {

 g_cObj--;

 if (0L==g_cObj && 0L==g_cLock && !g_fUser)

 //Begin shutdown

 return;

 }

HRESULT CTextRenderFactory::LockServer(BOOL fLock) {

 if (fLock)

 g_cLock++; // for single threaded app only, of course

 else {

 g_cLock--;

 if (0L==g_cObj && 0L==g_cLock && !g_fUser)

 //Begin shutdown

 }

 return NOERROR;

59 Under Microsoft Windows, the application usually starts shutdown by posting a WM_CLOSE message to its main window, simulating what

happens when a user closes an application. This eventually causes the application to exit the WinMain function.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 109 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

 }

If desired, you can of course centralize the shutdown conditions by artificially incrementing the object count in

IClassFactory::LockServer and directly calling ObjectDestroyed. That way you do not need redundant code in both func-

tions.

During shutdown, the server is responsible for calling CoRevokeClassObject on all previously registered class factories

and for calling CoUninitialize like any COM application.

A server application only needs a ñuser-controlò flag if it becomes visible in some way and also allows the user to

perform some action which would necessitate the application stays running regardless of any other conditions. For

example, the server might be running to service an object for a client and the user opens another file in that same

application. Since the user is the only agent who can close the file, the user control flag is set to TRUE meaning that

the user must explicitly close the application: no automatic shutdown is possible.

If a server is visible and under user control, there is the possibility that clients have connections to objects within that

server when the user explicitly closes the application. In that situation the server can take one of two actions:

1. Simply hide the application and reset the user control flag to FALSE such that the server will au-

tomatically shut down when all objects and locks are released.

2. Terminate the application but call CoDisconnectObject for each object in service to forcibly discon-

nect all clients.

The second option, though more brutal, is necessary in some situations. The CoDisconnectObject function exists to

insure that all external reference counts to the serverôs objects are released such that the server can release its own

references and destroy all objects.

.1 CoDisconnectObject

HRESULT CoDisconnectObject(pUnk, dwReserved)

This function serves any extant remote connections that are being maintained on behalf of all the interface pointers

on this object. This is a very rude and privileged operation which should generally only be invoked by the process in

which the object actually is managed by the object implementation itself.

The primary purpose of this operation is to give an application process certain and definite control over connections

to other processes that may have been made from objects managed by the process. If the application process wishes

to exit, then we do not want it to be the case that the extant reference counts from clients of the applicationôs objects

in fact keeps the process alive. The process can call this function for each of the objects that it manages without

waiting for any confirmation from clients. Having thus released resources maintained by the remoting connections,

the application process can exit safely and cleanly. In effect, CoDisconnectObject causes a controlled crash of the re-

moting connections to the object.

Argument Type Description

pUnk IUnknown * The object that we wish to disconnect. May be any interface on the object which

is polymorphic with IUnknown, not necessarily the exact interface returned by
QueryInterface(IID_IUnknown...).

dwReserved DWORD Reserved for future use; must be zero.

Return Value Meaning

S_OK Success.

E_UNEXPECTED An unspecified error occurred.

5 Object Handlers

As mentioned earlier this specification, object handlers from one perspective are special cases of in-process servers

that talk to their local or remote servers as well as a client. From a second perspective, an object handler is really just

a fancy proxy for a local or remote server that does a little more than just forward calls through RPC. The latter view

is more precise architecturally: a ñhandlerò is simply the piece of code that runs in the clientôs space on behalf of a

remote object; it can be used synonymously with the term ñproxy object.ò The handler may be a trivial one, one that

simply forwards all of its calls on to the remote object, or it may implement some amount of non-trivial client side

processing. (In practice, the term ñproxy objectò is most often reserved for use with trivial handlers, leaving ñhan-

dlerò for the more general situation.)

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 110 DRAFT: October 24, 1995

 All Rights Reserved

The structure of an object handler is exactly the same as a full-in process server: an object handler implements an

object, a class factory, and the two functions DllGetClassObject and DllCanUnloadNow exactly as described above.

The key difference between handlers and full DLL servers (and simple proxy objects, for that matter) is the extent to

which they implement their respective objects. Whereas the full DLL server implements the complete object (using

other objects internally, if desired), the handler only implements a partial object depending on a local or remote

server to complete the implementation. Again, the reasons for this is that sometimes a certain interface can only be

useful when implemented on an in-process object, such as when member functions of that interface contain parame-

ters that cannot be shared between processes. Thus the object in the handler would implement the restricted

in-process interface but leave all others for implementation in the local or remote server.

6 Object Reusability

With object-oriented programming it is often true that there already exists some object that implements some of what

you want to implement, and instead of rewriting all that code yourself you would like to reuse that other object for

your own implementation. Hence we have the desire for object reusability and a number means to achieve it such as

implementation inheritance, which is exploited in C++ and other languages. However, as discussed in the ñObject

Reusabilityò section of Chapter 2, implementation inheritance has some significant drawbacks and problems that do

not make it a good object reusability mechanism for a system object model.

For that reason COM supports two notions of object reuse, containment and aggregation, that were also described in

Chapter 2. In that chapter we saw that containment, the most common and simplest for of object reuse, is where the

ñouter objectò simply uses other ñinner objectsò for their services. The outer object is nothing more than a client of

the inner objects. We also saw in Chapter 2 the notion of aggregation, where the outer object exposes interfaces from

inner objects as if the outer object implemented those interfaces itself. We brought up the catch that there has to be

some mechanism through which the IUnknown behavior of inner object interfaces exposed in this manner is appropri-

ate to the outer object. We are now in a position to see exactly how the solution manifests itself.

The following sections treat Containment and Aggregation in more detail using the TextRender object as an example.

To refresh our memory of this objectôs purpose, the following list reiterates the specific features of the TextRender

object that implements the IPersistFile and IDataObject interfaces:

¶ Read text from a file through IPersistFile::Load

¶ Write text to a file through IPersistFile::Save

¶ Accept a memory copy of the text through IDataObject::SetData

¶ Render a memory copy of the text through IDataObject::GetData

¶ Render metafile and bitmap images of the text also through IDataObject::GetData

.1 Reusability Through Containment

Letôs say that when we decide to implement the TextRender object we find that another object exists with

CLSID_TextImage that is capable of accepting text through IDataObject::SetData but can do nothing more than render a

metafile or bitmap for that text through IDataObject::GetData. This ñTextImageò object cannot render memory copies of

the text and has no concept of reading or writing text to a file. But it does such a good job implementing the graph-

ical rendering that we wish to use it to help implement our TextRender object.

In this case the TextRender object, when asked for a metafile or bitmap of its current text in IDataObject::GetData,

would delegate the rendering to the TextImage object. TextRender would first call TextImageôs IDataObject::SetData to

give it the most recent text (if it has changed since the last call) and then call TextImageôs IDataObject::GetData asking

for the metafile or bitmap format. This delegation is illustrated in Figure 6-3.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 111 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

TextImage

(Contained)

IPersistFile

IDataObject

TextRender

IDataObject

Use SetData to tell

TextImage of text.

Use GetData to retrieve

graphical renderings.

Figure 6-3: An outer object that uses inner objects through

containment is a client of the inner objects.

To create this configuration, the TextRender object would, during its own creation, instantiate the TextImage object

with the following code, storing the TextImageôs IDataObject pointer in a TextImage field m_pIDataObjImage:

//TextRender initialization

HRESULT hr;

hr=CoCreateInstance(CLSID_TextImage, CLSCTX_SERVER, NULL, IID_IDataObject, (void *)&m_pIDataObjImage);

if (FAILED(hr))

 //TextImage not available, either fail or disable graphic rendering

//Success: can now make use of TextImage object.

This code is included here to show the NULL parameter in the middle of the call to CoCreateInstance. This is the ñouter

unknownò and is only applicable to aggregation. Containment does not make use of the outer unknown concept and

so this parameter should always be NULL.

Now that the TextRender object has TextImageôs IDataObject it can delegate functionality to TextImage as needed. The

following pseudo-code illustrates how TextRenderôs IDataObject::GetData function might be implemented:

HRESULT CTextRender::GetData(FORMATETC *pFE, STGMEDIUM *pSTM)

 {

 switch ([format in FORMATETC])

 {

 case <text>:

 //Make copy of text and return

 case <metafile>:

 case <bitmap>:

 //Insure TextImage has current text

 m_pIDataObjImage->SetData(<copy of our current text>);

 return m_pIDataObjImage->GetData(pFE, pSTM);

 }

 return <error>;

 }

Note that if the TextImage object was modified at some later date to implement additional interfaces (such as

IPersistFile) or was updated to also support rendering copies of text in memory just like TextRender, the code above

would still function perfectly. This is the key power of COMôs reusability mechanisms over traditional lan-

guage-style implementation inheritance: the reused object can freely revise itself so long as it continues to provide

the exact behavior it has provided in the past. Since the TextRender object never bothers to query for any other inter-

face on TextImage, and because it never callôs TextImageôs GetData for any format other than metafile or bitmap, Tex-

tImage can implement any number of new interfaces and support any number of new formats in GetData. All Tex-

tImage has to insure is that the behavior of SetData for text and the behavior of GetData for metafiles and bitmaps

remains the same.

Of course, this is just a simple example of containment. Real components will generally be much more complex and

will generally make use of many inner objects and many more interfaces in this manner. But again, since the outer

object only depends on the behavior of the inner object and does not care how it goes about performing its opera-

tions, the inner object can be modified without requiring any recompilation or any other changes to the outer object.

That is reusability at its finest.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 112 DRAFT: October 24, 1995

 All Rights Reserved

.2 Reusability Through Aggregation

Letôs now say that we are planning to revise our TextRender object at a later time than out initial containment im-

plementation in the previous section. At that time we find that the implementor of the TextImage object at the time

the implementor of the TextRender object sat down to work (or perhaps is making a revision of his object) that the

vendor of the TextImage object has improved TextImage such that it implements everything that TextRender would

like to do through its IDataObject interface. That is, TextImage still accepts text through SetData but has recently add-

ed the ability to make copies of its text and provide those copies through GetData in addition to metafiles and bit-

maps.

In this case, the implementor of TextRender now sees that TextImageôs implementation of IDataObject is exactly the

implementation that TextRender requires. What we, as the implementors of TextRender, would like to do now is

simply expose TextImageôs IDataObject as our own as shown in Figure 6-4.

TextImage

(Contained)

IPersistFile

IDataObject

TextRender

Use SetData to tell

TextImage of text.

Expose TextImageôs

IDataObject directly

Figure 6-4: When an inner object does a complete job implementing an

interface, outer objects may want to expose the interface directly.

The only catch is that we must implement the proper behavior of the IUnknown members in the inner objectôs (Tex-

tImage) IDataObject interface: AddRef and Release have to affect the reference count on the outer object (TextRender)

and not the reference count of the inner object. Furthermore, QueryInterface has to be able to return the TextRender

objectôs IPersistFile interface. The solution is to inform the inner object that it is being used in an aggregation such

that when it sees IUnknown calls to its interfaces it can delegate those calls to the outer object.

One other catch remains: the outer object must have a means to control the lifetime of the inner object through

AddRef and Release as well as have a means to query for the interfaces that only exist on the inner object. For that

reason, the inner object must implement an isolated version of IUnknown that controls the inner object exclusively and

never delegates to the outer object.60 This requires that the inner object separates the IUnknown members of its func-

tional interfaces from an implementation of IUnknown that strictly controls the inner object itself. In other words, the

inner object, to support aggregation, must implement two sets of IUnknown functions: delegating and non-delegating.

This, then, is the mechanism for making aggregation work:

1. When creating the inner object, the outer object must pass its own IUnknown to the inner object through the

pUnkOuter parameter of IClassFactory::CreateInstance. pUnkOuter in this case is called the ñcontrolling unknown.ò

2. The inner object must check pUnkOuter in its implementation of CreateInstance. If this parameter is non-NULL,

then the inner object knows it is being created as part of an aggregate. If the inner object does not support ag-

gregation, then it must fail with CLASS_E_NOAGGREGATION. If aggregation is supported, the inner object saves

pUnkOuter for later use, but does not call AddRef on it. The reason is that the inner objectôs lifetime is entirely

contained within the outer objectôs lifetime, so there is no need for the call and to do so would create a circular

reference.

3. If the inner object detects a non-NULL pUnkOuter in CreateInstance, and the call requests the interface IUnknown

itself (as is almost always the case), the inner object must be sure to return its non-delegating IUnknown.

4. If the inner object itself aggregates other objects (which is unknown to the outer object) it must pass the same

pUnkOuter pointer it receives down to the next inner object.

5. When the outer object is queried for an interface it exposes from the inner object, the outer object calls

QueryInterface in the non-delegating IUnknown to obtain the pointer to return to the client.

60 An interface with such an IUnknown is sometimes called an ñinnerò interface on the aggregated object. There may, in general, be several inner

interfaces on an object. IRpcProxyBuffer, for example, is one. This is a property of the interface itself, not the implementation.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 113 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

6. The inner object must delegate to the controlling unknown, that is, pUnkOuter, all IUnknown calls occurring in any

interface it implements other than the non-delegating IUnknown.

Through these steps, the inner object is made aware of the outer object, obtains an IUnknown to which it can delegate

calls to insure proper behavior of reference counting and QueryInterface, and provides a way for the outer object to

control the inner objectôs lifetime separately. The mechanism is illustrated in Figure 6-5.

TextImage

(Aggregated)

IPersistFile

IDataObject

TextRender

Use SetData to tell

TextImage of text.

Expose TextImageôs

IDataObject directly

Explicit

IUnknown TextRender

IUnknown

Functions

Delegate IUnknown

calls in IDataObject

to TextRender.

Figure 6-5: Aggregation requires an explicit implementation of IUnknown on the inner

object and delegation of IUnknown function of any other interface to the outer objectôs

IUnknown functions.

Now letôs look at how this mechanism manifests in code. First off, the TextRender object no longer needs itôs own

IDataObject implementation and can thus remove it from itôs class, but will need to add a member m_pUnkImage to

maintain the TextImageôs non-delegating IUnknown:

class CTextRender : public IPersistFile {

 private:

 ULONG m_cRef; //Reference Count

 char * m_pszText; //Pointer to allocated text

 ULONG m_cchText; //Number of characters in m_pszText

 IUnknown * m_pUnkImage; //TextImage IUnknown

 //Other internal member functions here

 public:

 [Constructor, Destructor]

 //Outer object IUnknown

 HRESULT QueryInterface(REFIID iid, void ** ppv);

 ULONG AddRef(void);

 ULONG Release(void);

 //IPersistFile Member overrides

 ...

 };

In the previous section we saw how the TextRender object would create a TextImage object for containment using

CoCreateInstance with the pUnkOuter parameter set to NULL. In aggregation, this parameter will be TextRenderôs own

IUnknown (obtained using a typecast). Furthermore, TextRender must request IUnknown initially from TextImage

(storing the pointer in m_pUnkImage):

//TextRender initialization

HRESULT hr;

hr=CoCreateInstance(CLSID_TextImage, CLSCTX_ SERVER, (IUnknown *)this, IID_IUnknown, (void *)&m_pUnkImage);

if (FAILED(hr))

 //TextImage not available, either fail or disable graphic rendering

//Success: can now make use of TextImage object.

Now, since TextRender does not have itôs own IDataObject any longer, its implementation of QueryInterface will use

m_pUnkImage to obtain interface pointers:

HRESULT CTextRender::QueryInterface(REFIID iid, void ** ppv) {

 *ppv=NULL;

 //This code assumes an overloaded == operator for GUIDs exists

 if (IID_IUnknown==iid)

 *ppv=(void *)(IUnknown *)this;

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 114 DRAFT: October 24, 1995

 All Rights Reserved

 if (IID_IPersitFile==iid)

 *ppv=(void *)(IPersistFile *)this;

 if (IID_IDataObject==iid)

 return m_pUnkImage->QueryInterface(iid, ppv);

 if (NULL==*ppv)

 return E_NOINTERFACE; //iid not supported.

 //Any call to anyoneôs AddRef is our own.

 AddRef();

 return NOERROR;

 }

Note that delegating QueryInterface to the inner object is done only for those interfaces that the outer object knows it

wants to expose. The outer object should not delegate the query as a default case, for such blind forwarding without

an understanding of the semantic being forwarded will almost assuredly break the outer object should the inner one

be revised with new functionality.

.1 Caching interfaces on the inner object

In order to avoid reference counting cycles, special action is needed if the outer object wishes to cache pointers to the

inner objectôs interfaces.

Specifically, if the outer object wishes to cache a to an inner objectôs interface, once it has obtained the interface

from the inner object, the outer object should invoke Release on the punkOuter that was given to the inner object at its

instantiation time.

// Obtaining inner object interface pointer

pUnkInner->QueryInterface(IID_IFoo, &pIFoo);

pUnkOuter->Release();

// Releasing inner object interface pointer

pUnkOuter->AddRef();

pIFoo->Release();

It is suggested that to allow inner objects to do better resource management that controlling objects delay the acquisi-

tion of cached pointers and release them when there is no possible use for them.

.2 Efficiency at any Depth of Aggregation

Aggregation has one interesting aspect when aggregates are used on more than one level of an object implementa-

tion. Imagine that the TextImage object in the previous example is itself an aggregate object that uses other inner

objects. In such a case TextImage will be passing some controlling unknown to those other inner objects. If Tex-

tImage is not being aggregated by anyone else, then the controlling unknown is its own; otherwise it passes the

pUnkOuter from IClassFactory::CreateInstance on down the line, and any other inner objects that are aggregates them-

selves do the same.

The net result is that any object in an aggregation, no matter how deeply it is buried in the overall structure, will

almost always delegate directly to the controlling unknown if itôs interface is exposed from that final outer object.

Therefore performance and efficiency of multiple levels of aggregation is not an issue. At worst each delegation is a

single extra function call.

7 Emulating Other Servers

The final topic related to COM Servers for this chapter is what is known as emulation: the ability for one server as-

sociated with one CLSID to emulate a server of another CLSID. A server that can emulate another is responsible for

providing compatible behavior for a different class through a different implementation. This forms the basis for al-

lowing end-users the choice in which servers are used for which objects, as long as the behavior is compatible be-

tween those servers.

As far as COM is concerned, it only has to provide some way for a server to indicate that it wishes to emulate some

CLSID. To that end, the COM Library supplies the function CoTreatAsClass to establish an emulation that remains in

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 115 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

effect (persistently) until canceled or changed. In addition it supplies CoGetTreatAsClass to allow a caller to determine

if a given CLSID is marked for emulation.

.1 CoTreatAsClass

HRESULT CoTreatAsClass(clsidOld, clsidNew)

Establish or cancel an emulation relationship between two classes. When clsidNew is emulating clsidOld, calls to

CoGetClassObject with clsidOld will transparently use clsidNew. Thus, for example, creating an object of clsidOld will in

fact launch the server for clsidNew and have it create the object instead.

This function does no validation on whether an appropriate registration entries exist for clsidNew.

An emulation is canceled by calling this function with clsidOld equal to the original class and clsidNew set to

CLSID_NULL.

Argument Type Description

clsidOld REFCID The class to be emulated.

clsidNew REFCID The class which should emulate clsidOld. This replaces any existing emulation for

clsidOld. May be CLSID_NULL, in which case any existing emulation for clsidOld is

removed.

Return Value Meaning

S_OK Success.
CO_E_CLASSNOTREG to be described.

CO_E_READREGDB to be described.
CO_E_WRITEREGDB to be described.
E_UNEXPECTED An unspecified error occurred.

.2 CoGetTreatAsClass

HRESULT CoGetTreatAsClass(clsidOld, pclsidNew)

Return the existing emulation information for a given class. If no emulation entry exists for clsidOld then clsidOld is

returned in pclsidNew.

Argument Type Description

clsidOld REFCID The class for which the emulation information is to be retrieved.

pclsidNew CLSID * The place at which to return the class, if any, which emulates clsidOld. clsidOld is

returned if there is no such class. pclsidNew may not be NULL.

Return Value Meaning

S_OK Success. A new, (possibly) different CLSID is returned through *pclisdNew.
S_FALSE Success. The class is emulating itself.
CO_E_READREGDB .

E_UNEXPECTED An unspecified error occurred.

How the COM Library implements these functions depends upon the structure of the system registry. For example,

under Microsoft Windows, COM uses an additional subkey under an objectôs CLSID key in the form of:

TreatAs = {<new CLSID>}

When the Windowsô COM implementation of CoGetClassObject attempts to locate a server for a CLSID, it will always

call CoGetTreatAsClass to retrieve the actual CLSID to use. Since CoGetTreatAsClass will return the same CLSID as

passed in if no emulation exists, COM doesnôt have to do any special case checks for emulation.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 116 DRAFT: October 24, 1995

 All Rights Reserved

This page intentionally left blank.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 117 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

This page intentionally left blank.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 118 DRAFT: October 24, 1995

 All Rights Reserved

7. Interface Remoting

In COM, clients communicate with objects solely through the use of vtable-based interface instances. The state of the

object is manipulated by invoking functions on those interfaces. For each interface method, the object provides an

implementation that does the appropriate manipulation of the object internals.

Interface remoting provides the infrastructure and mechanisms to allow a method invocation to return an interface

pointer to an object that is in a different process, perhaps even on a different machine. The infrastructure that per-

forms the remoting of interfaces is transparent to both the client and the object server. Neither the client or object

server is necessarily aware that the other party is in fact in a different process.

This chapter first explains how interface remoting works giving mention to the interfaces and COM API functions

involved. The specifications for the interfaces and the API functions themselves are given later in this chapter. There

is also a brief discussion about concurrency management at the end of the chapter that involves an interface called

IMessageFilter.

1 How Interface Remoting Works

The crux of the problem to be addressed in interface remoting can be stated as follows:

ñGiven an already existing remoted-interface connection between a client process and a server

process, how can a method invocation through that connection return a new interface pointer so as

to create a second remoted-interface connection between the two processes?ò

We state the problem in this way so as to avoid for the moment the issue of how an initial connection is made be-

tween the client and the server process; we will return to that later.

Letôs look at an example. Suppose we have an object in a

server process which supports an interface IFoo, and that in-

terface of the object (and IUnknown) has sometime in the past

been remoted to a client process through some means not here

specified. In the client process, there is an object proxy which

supports the exact same interfaces as does the original server

object, but whose implementations of methods in those inter-

faces are special, in that they forward calls they receive on to calls on the real method implementations back in the

server object. We say that the method implementations in the object proxy marshal the data, which is then conveyed

to the server process, where it is unmarshaled. That is, ñmarshalingò refers to the packaging up of method arguments

for transmission to a remote process; ñunmarshalingò refers to the unpackaging of this data at the receiving end.

Notice that in a given call, the method arguments are marshaled and unmarshaled in one direction, while the return

values are marshaled and unmarshaled in the other direction.

For concreteness, let us suppose that the IFoo interface is defined as follows:

interface IFoo : IUnknown {

 IBar * ReturnABar();

 };

If the in the client process pFoo->ReturnABar() is invoked, then the object proxy will forward this call on to the

IFoo::ReturnABar() method in the server object, which will do whatever this method is supposed to do in order to come

up with some appropriate IBar*. The server object is then required to return this IBar* back to the client process. The

act of doing this will end up creating a second connection between the two processes:

It is the procedure by which this second connection is established

which is the subject of our discussion here. This process involves

two steps:

1. On the server side, the IBar* is packaged or marshaled into a

data packet.

2. The data packet is conveyed by some means to the client

process, where the data it contains is unmarshaled to create the

new object proxy.

The term ñmarshalingò is a general one that is applied in the in-

dustry to the packaging of any particular data type, not just inter-

face pointers, into a data packet for transmission through an RPC

infrastructure. Each different data type has different rules for how

IFoo

Client Process Server Process

IFoo

IUnknown

server

object

IUnknown

object

proxy

IFoo

Client Process Server Process

IFoo

IUnknown

server

object

IUnknown

object

proxy

IBar
IBar

IUnknown

server

object

IUnknown

object

proxy

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 119 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

it is to marshaled: integers are to be stored in a certain way, strings are to be stored in a certain way, etc.61 Likewise,

marshaled interface pointers are to be stored in a certain way; the Component Object Model function

CoMarshalInterface() contains the knowledge of how this is to be done (note that we will in this document not mention

further any kind of marshaling other than marshaling of interface pointers; that subject is well-explored in existing

RPC systems).

The process begins with the code doing the marshaling of the returned IBar* interface. This code has in hand a pointer

to an interface that it knows in fact to be an IBar* and that it wishes to marshal. To do so it calls CoMarshalInterface().

The first step in CoMarshalInterface() involves finding out whether the object of which this is an interface in fact sup-

ports custom object marshaling (often simply referred to as ñcustom marshalingò). Custom object marshaling is a

mechanism that permits an object to be in control of creation of remote object proxies to itself. In certain situations,

custom object marshaling can be used to create a more efficient object proxy than would otherwise be the case.62

Use of custom marshaling is completely optional on the objectôs part; if the object chooses not to support custom

marshaling, then standard interface marshaling is used to marshal the IBar*. Standard interface marshaling uses a

system-provided object proxy implementation in the client process. This standard implementation is a generic piece

of code, in that it can be used as the object proxy for any interface on any object. However, the act of marshaling

(and unmarshaling) method arguments and return values is inherently interface-specific, since it is highly sensitive to

the semantics and data types used in the particular methods in question. To accommodate this, the standard imple-

mentation dynamically loads in interface-specific pieces of code as needed in order to do the parameter marshaling.

We shall discuss in great detail in a moment how standard interface marshaling works. First, however, we shall re-

view custom object marshaling, as this provides a solid framework in which standard marshaling can be better un-

derstood.

2 Architecture of Custom Object Marshaling

Imagine that we are presently in a piece of code whose job it is to marshal an interface pointer that it has in hand. For

clarity, in what follows weôll refer to this piece of code as the ñoriginal marshaling stub.ò The general case is that the

original marshaling stub does not statically63 know the particular interface identifier (IID) to which the pointer con-

forms; the IID may be passed to this code as a second parameter. This is a common paradigm in the Component Ob-

ject Model. Extant examples of this paradigm include:

IUnknown::QueryInterface(REFIID riid, void** ppvObject);

IOleItemContainer::GetObject(..., REFIID riid, void** ppvObject);

IClassFactory::CreateInstance(..., REFIID riid, void** ppvNewlyCreatedObject);

Let us assume the slightly less general case where the marshaling stub in fact does know a little bit about the IID: that

the interface in fact derives from IUnknown. This is a requirement for remoting: it is not possible to remote interfaces

which are not derived from IUnknown.

To find out whether the object to which it has an interface supports custom marshaling, the original marshaling stub

simply does a QueryInterface() for the interface IMarshal. That is, an object signifies that it wishes to do custom mar-

shaling simply by implementing the IMarshal interface. IMarshal is defined as follows:

61 In fact, there exist several standard sets of rules, each promoted by a different organization. Two common such sets of rules are known as
ñNetwork Data Representationò (NDR) and ñExternal Data Representationò (XDR) chiefly promoted respectively by the Open Software Foun-

dation and Sun Microsystems. ASN.1 is another standard for the same sort of technology.
62 Notice here that weôre only discussing the marshaling of pointers to interfaces, and that the term ñcustom object marshalingò applies only to the

marshaling of this data type. In general in a given remote procedure call the many other kinds of data which appear as function parameters also
needs to be marshaled: strings, integers, structures, etc. We shall not concern ourselves here with such other data types, but instead concentrate

our discussion on marshaling interface pointers.
63 i.e.: at compile time of the original marshaling stub

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 120 DRAFT: October 24, 1995

 All Rights Reserved

[

 local,

 object,

 uuid(00000003-0000-0000-C000-000000000046)

]

interface IMarshal : IUnknown {

 HRESULT GetUnmarshalClass ([in] REFIID riid, [in, unique] void *pv,

 [in] DWORD dwDestContext, [in, unique] void *pvDestContext,

 [in] DWORD mshlf lags, [out] CLSID *pCid);

 HRESULT GetMarshalSizeMax ([in] REFIID riid, [in, unique] void *pv,

 [in] DWORD dwDestContext, [in, unique] void *pvDestContext,

 [in] DWORD mshlf lags, [out] DWORD *pSize);

 HRESULT MarshalInterface ([in, unique] IStream *pStm, [in] REFIID riid, [in, unique] void *pv,

 [in] DWORD dwDestContext, [in, unique] void *pvDestContext, [in] DWORD mshlf lags);

 HRESULT UnmarshalInterface ([in, unique] IStream *pStm, [in] REFIID riid, [out] void **ppv);

 HRESULT ReleaseMarshalData ([in, unique] IStream *pStm);

 HRESULT DisconnectObject ([in] DWORD dwReserved);

}

The idea is that if the object says ñYes, I do want to do custom marshalingò that the original marshaling stub will use

this interface in order to carry out the task. The sequence of steps that carry this out is:

1. Using GetUnmarshalClass, the original marshaling stub asks the object which kind of (i.e.: which class of) proxy

object it would like to have created on its behalf in the client process.

2. (optional on the part of the marshaling stub) Using GetMarshalSizeMax, the stub asks the object how big of a

marshaling packet it will need. When asked, the object will return an upper bound on the amount of space it will

need.64

3. The marshaling stub allocates a marshaling packet of appropriate size, then creates an IStream* which points into

the buffer. Unless in the previous step the marshaling stub asked the object for an upper bound on the space

needed, the IStream* must be able to grow its underlying buffer dynamically as IStream::Write calls are made.

4. The original marshaling stub asks the object to marshal its data using MarshalInterface.

We will discuss the methods of this interface in detail later in this chapter.

At this point, the contents of the memory buffer pointed to by the IStream* together with the class tag returned in step

(1) comprises all the information necessary in order to be able to create the proxy object in the client process. It is the

nature of remoting and marshaling that ñoriginal marshaling stubsò such as we have been discussing know how to

communicate with the client process; recall that we are assuming that an initial connection between the two process-

es had already been established. The marshaling stub now communicates to the client process, by whatever means is

appropriate, the class tag and the contents of the memory that contains the marshaled interface pointer. In the client

process, the proxy object is created as an instance of the indicated class using the standard COM instance creation

paradigm. IMarshal is used as the initialization interface; the initialization method is IMarshal::UnmarshalInterface(). The

unmarshaling process looks something like the following:

void ExampleUnmarshal(CLSID& clsidProxyObject, IStream* pstm, IID& iidOriginallyMarshalled, void** ppvReturn)

{

IClassFactory* pcf;

IMarshal* pmsh;

CoGetClassObject(clsidProxyObject, CLSCTX_INPROC_HANDLER, NULL, IID_IClassFactory, (void**)&pcf);

pcf->CreateInstance(NULL, IID_IMarshal, (void**)pmsh);

pmsh->UnmarshalInterface(pstm, iidOriginallyMarshalled, ppvReturn);

pmsh->ReleaseMarshalData(pstm)

pmsh->Release();

pcf->Release();

}

There are several important reasons why an object may choose to do custom marshaling.

¶ It permits the server implementation, transparently to the client, to be in complete control of the nature of the

invocations that actually transition across the network. In designing component architectures, one often runs into

a design tension between the interface which for simplicity and elegance one wishes to exhibit to client pro-

grammers and the interface that is necessary to achieve efficient invocations across the network. The former, for

example, might naturally wish to operate in terms of small-grained simple queries and responses, whereas the

latter might wish to batch requests for efficient retrieval. The client and the network interfaces are in design ten-

sion; custom marshaling is the crucial hook that allows us to have our cake and eat it too by giving the server

64 That is, it is explicitly legal for the caller of GetMarshalSizeMax() to allocate a fixed size marshaling buffer containing no more than the indicated

upper bound number of bytes.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 121 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

implementor the ability to tune the network interface without affecting the interface seen by its client.

When the object does custom marshaling, the client loses any "COM provided" communication to the original

object. If the proxy wants to "keep in touch", it has to connect through some other means (RPC, Named pipeé)

to the original object. Custom Object Marshaling can not be done on a per interface basic, because object iden-

tity is lost! Custom Object Marshaling is a sophisticated way for an object to pass a copy of an existing instance

of itself into another execution context.

¶ Some objects are of the nature that once they have been created, they are immutable: their internal state does not

subsequently change. Many monikers are an example of such objects. These sorts of objects can be efficiently

remoted by making independent copies of themselves in client processes. Custom marshaling is the mechanism

by which they can do that, yet have no other party be the wiser for it.

¶ Objects which already are proxy objects can use custom marshaling to avoid creating proxies to proxies; new

proxies are instead short-circuited back to the original server. This is both an important efficiency and an im-

portant robustness consideration.

¶ Object implementations whose whole state is kept in shared memory can often be remoted to other process on

the same machine by creating an object in the client that talks directly to the shared memory rather than back to

the original object. This can be a significant performance improvement, since access to the remoted object does

not result in context switches. The present Microsoft Compound File implementation is an example of objects

using this kind of custom marshaling.

3 Architecture of Standard Interface / Object Marshaling

If the object being marshaled65 chooses not to implement custom object marshaling, a ñdefaultò or ñstandardò object

marshaling technique is used. An important part of this standard marshaling technique involves locating and loading

the interface-specific pieces of code that are responsible for marshaling and unmarshaling remote calls to instances

of that interface. We call these interface-specific pieces of code used in standard marshaling and unmarshaling ñin-

terface proxiesò and ñinterface stubsò respectively.66 (It is important not to confuse interface proxies with the object

proxy, which relates to the whole representative in the client process, rather than just one interface on that repre-

sentative. We apologize for the subtleties of the terminology.)

The following figure gives an slightly simplified view of how the standard client- and server-side structures cooper-

ate.

When an interface of type IFoo needs to be remoted, a system registry is consulted under a key derived from IID_IFoo

to locate a class id that implements the interface proxy and interface stub for the given interface. Both the interface

proxies and the interface stubs for a given interface must be implemented by the same class. Most often, this class is

65 Astute readers will notice an abuse of terminology here: what is really being marshaled in hand is one particular interface on the object, not the

whole object, though in fact in the remote process access to the whole process is indeed obtained: new interfaces on the object will be mar-
shaled later as needed. We trust that this will not lead to too much confusion.

66 Other RPC systems sometimes instead call these ñclient side stubsò and ñserver side stubs.ò Sometimes we mix things up a bit and refer to
ñproxy interfacesò and ñstub interfacesò instead of ñinterface proxiesò and ñinterface stubs.ò

IUnknown......

IUnknown

IFoo IBar IBaz

interface proxies
(for IFoo, IBar, and IBaz)

IRpcProxyBuffer IRpcStubBuffer

Client Process Server Process

IRpcChannelBuffer

interface stubs
(for IFoo, IBar, and IBaz)

IFoo

IBar

IBaz

server

object

proxy manager

stub manager
object proxy

channel to

stub mgr commôn

is private

RPC Channel

(conceptual)

Simplified conceptual view of client - server remoting structures

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 122 DRAFT: October 24, 1995

 All Rights Reserved

automatically generated by a tool whose input is a description of the function signatures and semantics of the inter-

face, written in some ñinterface description language,ò often known as ñIDL.ò However, while highly recommended

and encouraged for accuracyôs sake, the use of such a tool is by no means required; interface proxies and stubs are

merely Component Object Model components which are used by the RPC infrastructure, and as such, can be written

in any manner desired so long as the correct external contracts are upheld. From a logical perspective, it is ultimately

the programmer who is the designer of a new interface who is responsible for ensuring that all interface proxies and

stubs that ever exist agree on the representation of their marshaled data. The programmer has the freedom to

achieve this by whatever means he sees fit, but with that freedom comes the responsibility for ensuring the compati-

bility.

In the figure, the ñstub managerò is ñconceptualò in the sense that while it useful in this documentation to have a

term to refer to the pieces of code and state on in the server-side RPC infrastructure which service the remoting of a

given object, there is no direct requirement that the code and state take any particular well-specified form.67 In con-

trast, on the client side, there is an identifiable piece of state and associated behavior which appears to the client code

to be the one, whole object. The term ñproxy managerò is used to refer to the COM Library provided code that man-

ages the client object identity, etc., and which dynamically loads in interface proxies as needed (per QueryInterface

calls). The proxy manager implementation is intimate with the client-side RPC channel implementation, and the

server-side RPC channel implementation is intimate with the stub manager implementation.

Interface proxies are created by the client-side COM Library infrastructure using a code sequence resembling the

following:

clsid = LookUpInRegistry(key derived from iid)

CoGetClassObject(clsid, CLSCTX_SERVER, NULL, IID_IPSFactoryBuffer, &pPSFactory));

pPSFactory->CreateProxy(pUnkOuter, riid, &pProxy, &piid);

Interface stubs are created by the server-side RPC infrastructure using a code sequence resembling:

clsid = LookUpInRegistry(key derived from iid)

CoGetClassObject(clsid, CLSCTX_SERVER, NULL, IID_IPSFactoryBuffer, &pPSFactory));

pPSFactory->CreateStub(iid, pUnkServer, &pStub);

In particular, notice that the class object is talked-to with IPSFactoryBuffer interface rather than the more common

IClassFactory.

The interfaces mentioned here are as follows:

interface IPSFactoryBuffer : IUnknown {

 HRESULT CreateProxy(pUnkOuter, iid, ppProxy, ppv);

 HRESULT CreateStub(iid, pUnkServer, ppStub);

 };

interface IRpcChannelBuffer : IUnknown {

 HRESULT GetBuffer(pMessage, riid);

 HRESULT SendReceive(pMessage, pStatus);

 HRESULT FreeBuffer(pMessage);

 HRESULT GetDestCtx(pdwDestCtx, ppvDestCtx);

 HRESULT IsConnected();

 };

interface IRpcProxyBuffer : IUnknown {

 HRESULT Connect(pRpcChannelBuffer);

 void Disconnect();

 };

interface IRpcStubBuffer : IUnknown {

 HRESULT Connect(pUnkServer);

 void Disconnect();

 HRESULT Invoke(pMessage, pChannel);

 IRPCStubBuffer* IsIIDSupported(iid);

 ULONG CountRefs();

 HRESULT DebugServerQueryInterface(ppv);

 void DebugServerRelease(pv);

 };

Suppose an interface proxy receives a method invocation on one of itôs interfaces (such as IFoo, IBar, or IBaz in the

above figure). The interface proxyôs implementation of this method first obtains a marshaling packet from its RPC

channel using IRpcChannelBuffer::GetBuffer(). The process of marshaling the arguments will copy data into the buffer.

67 There are, however, implied requirements for the existence of some piece of code / state that manages the entire set of external remoting con-

nections for a given object. See CoLockObjectExternal(), for example.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 123 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

When marshaling is complete, the interface proxy invokes IRpcChannelBuffer::SendReceive() to send the method invo-

cation across the ñwireò to the corresponding interface stub. When IRpcChannelBuffer::SendReceive() returns, the con-

tents of buffer into which the arguments were marshaled will have been replaced by the return values marshaled

from the interface stub. The interface proxy unmarshals the return values, invokes IRpcChannelBuffer::FreeBuffer() to

free the buffer, then returns the return values to the original caller of the method.

It is the implementation of IRpcChannelBuffer::SendReceive() that actually sends the request over to the server process.

It is only the channel who knows or cares how to identify the server process and object within that process to which

the request should be sent; this encapsulation allows the architecture we are describing here to function for a variety

of different kinds of channels: intra-machine channels, inter-machine channels (i.e.: across the network), etc. The

channel implementation knows how to forward the request onto the appropriate stub manager object in the appropri-

ate process. From the perspective of this specification, the channel and the stub manager are intimate with each other

(and intimate with the proxy manager, for that matter). Through this intimacy, eventually the appropriate interface

stub receives an IRpcStubBuffer::Invoke() call. The stub unmarshals the arguments from the provided buffer, invokes the

indicated method on the server object, and marshals the return values back into a new buffer, allocated by a call to

IRpcChannelBuffer::GetBuffer(). The stub manager and the channel then cooperate to ferry the return data packet back to

the interface proxy, who is still in the middle of IRpcChannelBuffer::SendReceive(). IRpcChannelBuffer::SendReceive()

returns to the proxy, and we proceed as just described above.

When created, interface proxies are always aggregated into the larger object proxy: at interface-proxy-creation time,

the proxy is given the IUnknown* to which it should delegate its QueryInterface(), etc., calls, as per the usual aggregation

rules. When connected, the interface proxy is also given (with IRpcProxyBuffer::Connect()) a pointer to an IRpcChannel-

Buffer interface instance. It is through this pointer that the interface proxy actually sends calls to the server process.

Interface proxies bring a small twist to the normal everyday aggregation scenario. In aggregation, each interface

supported by an aggregateable object is classified as either ñexternalò or ñinternal.ò External interfaces are the norm.

They are the ones whose instances are exposed directly to the clients of the aggregate as whole. It is always the case

that a QueryInterface() that requests an external interface of an aggregated object should be delegated by the object to

its controlling unknown (ditto for AddRef() and Release()). Internal interfaces, on the other hand, are never exposed to

outside clients. Instead, they are solely for the use of the controlling unknown in manipulating the aggregated object.

QueryInterface() for internal interfaces should never be delegated to the controlling unknown (ditto again). In the

common uses of aggregation, the IUnknown interface on the object is the only internal interface. The twist that inter-

face proxies bring is that IRpcProxyBuffer is also an internal interface.

Interface stubs, by contrast with interface proxies, are not aggregated, since there is no need that they appear to some

external client to be part of a larger whole. When connected, an interface stub is given (with IRpcStubBuffer::Connect())

a pointer to the server object to which they should forward invocations that they receive.

A given interface proxy instance can if it chooses to do so service more than one interface. For example, in the above

figure, one interface proxy could have chosen to service both IFoo and IBar. To accomplish this, in addition to in-

stalling itself under the appropriate registry entries, the proxy should support QueryInterface()ing from one supported

interface (and from IUnknown and IRpcProxyBuffer) to the other interfaces, as usual. When the Proxy Manager in a

given object proxy finds that it needs the interface proxy for some new interface that it doesnôt already have, before it

goes out to the registry to load in the appropriate code using the code sequence described above, it first does a Query-

Interface() for the new interface id (IID) on all of its existing interface proxies. If one of them supports the interface,

then it is used rather than loading a new interface proxy.

Interface stub instances, too, can service more than one interface on a server object. However, the extent to which

they can do so is quite restricted: a given interface stub instance may support one or more interfaces only if that set

of interfaces has in fact a strict single-inheritance relationship. In short, a given interface stub needs to know how to

interpret a given method number that it is asked to invoke without at that same time also being told the interface id

(IID) in which that method belongs; the stub must already know the relevant IID. The IID which an interface stub is

initially created to service is passed as parameter to IPSFactoryBuffer::CreateStub(). After creation, the interface stub

may from time to time be asked using IRpcStubBuffer::IsIIDSupported() if it in fact would also like be used to service

another IID. If the stub also supports the second IID, then it should return the appropriate IRpcStubBuffer* for that IID;

otherwise, the stub buffer should return NULL. This permits the stub manager in certain cases to optimize the loading

of interface stubs.

Both proxies and stubs will at various times have need to allocate or free memory. Interface proxies, for example,

will need to allocate memory in which to return out parameters to their caller. In this respect interface proxies and

interface stubs are just normal Component Object Model components, in that they should use the standard task allo-

cator; see CoGetMalloc(). See also the earlier discussion regarding specific rules for passing in, out, and in out pointers.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 124 DRAFT: October 24, 1995

 All Rights Reserved

On Microsoft Windows platforms, the ñkey derived from IIDò under which the registry is consulted to learn the

proxy/stub class is as follows:

Interfaces

 {IID}

 ProxyStubClsid32 = {CLSID}

Here {CLSID} is a shorthand for any class id; the actual value of the unique id is put between the {}'s; e.g.

{DEADBEEF-DEAD-BEEF-C000-000000000046}; all digits are upper case hex and there can be no spaces. This string

format for a unique id (without the {}ôs) is the same as the OSF DCEã standard and is the result of the String-

FromCLSID routine. {IID} is a shorthand for an interface id; this is similar to {CLSID}; StringFromIID can be used to pro-

duce this string.

4 Archit ecture of Handler Marshaling

Handler marshaling is a third variation on marshaling, one closely related to standard marshaling. Colloquially, one

can think of it as a middle ground between raw standard marshaling and full custom marshaling.

In handler marshaling, the object specifies that it would like to have some amount of client-side state; this is desig-

nated by the class returned by IStdMarshalInfo::GetClassForHandler. However, this handler class rather than fully taking

over the remoting to the object instead aggregates in the default handler, which carries out the remoting in the stand-

ard manner as described above.

5 Standards for Marshaled Data Packets

In the architecture described here, nothing has yet to be said about representation or format standards for the data that

gets placed in marshaling packets. There is a good reason for this. In the Component Object Model architecture, the

only two parties that have to agree on what goes into a marshaling packet are the code that marshals the data into the

packet and the code that unmarshals it out again: the interface proxies and the interface stubs. So long as we are

dealing only with intra-machine procedure calls (i.e.: non-network), then we can reasonably assume that pairs of

interface proxies and stubs are always installed together on the machine. In this situation, we have no need to specify

a packet format standard; the packet format can safely be a private matter between the two piece of code.

However, once a network is involved, relying on the simultaneous installation of corresponding interface proxies and

stubs (on different machines) is no longer a reasonable thing to do. Thus, when the a method invocation is in fact

remoted over a network, it is strongly recommended that the data marshaled into the packet to conform to a pub-

lished standard (NDR), though, as pointed out above, it is technically the interface-designerôs responsibility to

achieve this correspondence by whatever means he sees fit.

6 Creating an Initial Connection Between Processes

Earlier we said we would later discuss how an initial remoting connection is established between two processes. It is

now time to have that discussion.

The real truth of the matter is that the initial connection is established by some means outside of the architecture that

we have been discussing here. The minimal that is required is some primitive communication channel between the

two processes. As such, we cannot hope to discuss all the possibilities. But we will point out some common ones.

One common approach is that initial connections are established just like other connections: an interface pointer is

marshaled in the server process, the marshaled data packet is ferried the client process, and it is unmarshaled. The

only twist is that the ferrying is done by some means other than the RPC mechanism which weôve been describing.

There are many ways this could be accomplished. The most important, by far is one where the marshaled data is

passed as an out-parameter from an invocation on a well-known endpoint to a Service Control Manager.

7 Marshaling Interface and Function Descriptions

Having discussed on a high level how various remoting related interfaces work together, we now present each of

them in detail.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 125 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

.1 IPSFactoryBuffer Interface

IPSFactoryBuffer is the interface through which proxies and stubs are created. It is used to create proxies and stubs

that support IRpcProxyBuffer and IRpcStubBuffer respectively. Each proxy / stub DLL must support IPSFactory interface

on the class object accessible through its DllGetClassObject() entry point. As was described above, the registry is con-

sulted under a key derived from the IID to be remoted in order to learn the proxy/stub class that handles the remoting

of the indicated interface. The class object for this class is retrieved, asking for this interface. A proxy or a stub is

then instantiated as appropriate.

interface IPSFactoryBuffer : IUnknown {

 HRESULT CreateProxy(pUnkOuter, iid, ppProxy, ppv);

 HRESULT CreateStub(iid, pUnkServer, ppStub);

 };

.1 IPSFactoryBuffer::CreateProxy

HRESULT IPSFactoryBuffer::CreateProxy(pUnkOuter, iid, ppProxy, ppv)

Create a new interface proxy object. This function returns both an IRpcProxy instance and an instance of the interface

which the proxy is being created to service in the first place. The newly created proxy is initially in the unconnected

state.

Argument Type Description

pUnkOuter IUnknown * the controlling unknown of the aggregate in which the proxy is being created.

iid REFIID the interface id which the proxy is being created to service, and of which an

instance should be returned through ppv.

ppProxy IRpcProxyBuffer** on exit, contains the new IRpcProxyBuffer instance.

ppv void ** on exit, contains an interface pointer of type indicated by iid.

return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED, no others.

.2 IPSFactoryBuffer::Cre ateStub

HRESULT IPSFactoryBuffer::CreateStub(iid, pUnkServer, ppStub)

Create a new interface stub object. The stub is created in the connected state on the object indicated by pUnkServer.

If pUnkServer is non-NULL, then before this function returns the stub must verify (by using QueryInterface()) that the

server object in fact supports the interface indicated by iid. If it does not, then this function should fail with the error

E_NOINTERFACE.

Argument Type Description

iid REFIID the interface that the stub is being created to service

pUnkServer IUnknown* the server object that is being remoted. The stub should delegate incoming calls

(see IRpcStubBuffer::Invoke()) to the appropriate interface on this object. pUnkServer

may legally be NULL, in which case the caller is responsible for later calling

IRpcStubBuffer::Connect() before using IRpcStubBuffer::Invoke().

ppStub IRpcStubBuffer** the place at which the newly create stub is to be returned.

return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED, no others.

.2 IRpcChannelBuffer interface

IRpcChannelBuffer is the interface through which interface proxies send calls through to the corresponding interface

stub. This interface is implemented by the RPC infrastructure. The infrastructure provides an instance of this inter-

face to interface proxies in IRpcProxyBuffer::Connect(). The interface proxies hold on to this instance and use it each

time they receive an incoming call.

interface IRpcChannelBuffer : IUnknown {

 HRESULT GetBuffer(pMessage, riid);

 HRESULT SendReceive(pMessage, pStatus);

 HRESULT FreeBuffer(pMessage);

 HRESULT GetDestCtx(pdwDestCtx, ppvDestCtx);

 HRESULT IsConnected();

 };

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 126 DRAFT: October 24, 1995

 All Rights Reserved

.1 RPCOLEMESSAGE and related structures

Common to several of the methods in IRpcChannelBuffer is a data structure of type RPCOLEMESSAGE. This structure is

defined as is show below. The structure is to be packed so that there are no holes in its memory layout.

typedef struct RPCOLEMESSAGE {

 void * reserved1;

 RPCOLEDATAREP dataRepresentation; // in NDR transfer syntax: info about endianness, etc.

 void * pvBuffer; // memory buffer used for marshalling

 ULONG cbBuffer; // size of the marshalling buffer

 ULONG iMethod; // the method number being invoked

 void * reserved2[5];

 ULONG rpcFlags;

 } on the ultimate destination machine MESSAGE;68

The most significant member of this structure is pvBuffer. It is through the memory buffer to which pvBuffer points that

marshaled method arguments are transferred. cbBuffer is used to indicate the size of the buffer. iMethod is indicates a

particular method number within the interface being invoked. The IID of that interface is identified through other

means: on the client side as a parameter to GetBuffer(), and on the server side as part of the internal state of each in-

terface stub.

At all times all reserved values in this structure are to be initialized to zero by non-RPC-infrastructure parties (i.e.:

parties other than the channel / RPC runtime implementor) who allocate RPCOLEMESSAGE structures. However, the

RPC channel (more generally, the RPC runtime infrastructure) is free to modify these reserved fields. Therefore,

once initialized, the reserved fields must be ignored by the initializing code; they cannot be relied on to remain as

zero. Further, there are very carefully specified rules as to what values in these structures may or may not be modi-

fied at various times and by which parties. In almost all cases, aside from actually reading and writing data from the

marshaling buffer, which is done by proxies and stubs, only the channel may change these fields. See the individual

method descriptions for details.

Readers familiar with the connection-oriented DCE protocol may notice that the ñtransfer syntaxò used for marshal-

ing the arguments, the particular set of rules and conventions according to which data is marshaled, is not explicitly

called out. Architecturally speaking, it is only the interface proxy for a given interface and its corresponding interface

stub that cares at all about what set of marshaling rules is in fact used. However, in the general case these interface

proxies and stubs may be installed on different machines with a network in the middle, be written by different de-

velopment organizations on different operating systems, etc. Accordingly, in cases where the author of an interface

proxy for a given IID cannot guarantee that all copies of the corresponding interface stub are in fact always revised

and updated in synchrony with his interface proxy, a well-defined convention should be used for the transfer syntax.

Indeed, formal transfer syntax standards exist for this purpose. The one most commonly used is known as ñNetwork

Data Representationò (NDR), originally developed by Apollo Corporation and subsequently enhanced and adopted

by the Open Software Foundation as part of their Distributed Computing Environment (DCE). The Windows NT

operating system also uses NDR in its RPC implementation. Unless very good reasons exist to do otherwise, pro-

grammers are encouraged to use the NDR transfer syntax.

When NDR transfer syntax is used (and whether it is in use or not is implicitly known by the proxy or stub), the

member dataRepresentation provides further information about the rules by which data in the buffer is marshaled.

NDR is a ñmulti-canonicalò standard, meaning that rather than adopting one standard for things like byte-order,

character set, etc., multiple standards (a fixed set of them) are accommodated. Specifically, this is accommodated by

a ñreader make rightò policy: the writer / marshaler of the data is free to write the data in any of the supported varia-

tions and the reader / unmarshaler is expected to be able to read any of them. The particular data type in use is con-

veyed in an RPCOLEDATAREP structure, which is defined as follows. Note that this structure, too, is packed; the size

of the entire structure is exactly four bytes. The actual layout of the structure in all cases always corresponds to the

data representation value as defined in the DCE standard; the particular structure shown here is equivalent to that

layout in Microsoftôs and other common compilers.

typedef RPCOLEDATAREP {

 UINT uCharacterRep : 4; // least signficant nibble of first byte

 UINT uByteOrder : 4; // most signficant nibble of first byte

 BYTE uFloatRep;

 BYTE uReserved;

 BYTE uReserved2;

 } RPCOLEDATAREP;

The values which may legally be found in these fields are as shown in Table 1. Further information on the interpreta-

tion of this field can be found in the NDR Transfer Syntax standards documentation.

68 The layout of this structure is as odd as it is for historical reasons. Apologies are extended to those whose design aesthetics are offended.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 127 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

.2 IRpcChannelBuffer::GetBuffer

HRESULT IRpcChannelBuffer::GetBuffer(pMessage, iid)

This method returns a buffer into which data can be marshaled for subsequent transmission over the wire. It is used

both by interface proxies and by interface stubs, the former to marshal the incoming arguments for transmission to

the server, and the latter to marshal the return values back to the client.

Upon receipt of an incoming call from the client of the proxy object, interface proxies use GetBuffer() to get a buffer

into which they can marshaling the incoming arguments. A new buffer must be obtained for every call operation; old

buffers cannot be reused by the interface proxy. The proxy needs to ask for and correctly manage a new buffer even

if he himself does not have arguments to marshal (i.e.: a void argument list).69 Having marshaled the arguments, the

interface proxy then calls SendReceive() to actually invoke the operation. Upon return from SendReceive(), the buffer

no longer contains the marshaled arguments but instead contains the marshaled return values (and out parameter

values). The interface proxy unmarshals these values, calls FreeBuffer() to free the buffer, then returns to its calling

client.

On the server side (in interface stubs), the sequence is somewhat different. The server side will not be explored fur-

ther here; see instead the description of IRpcStubBuffer::Invoke() for details.

On the client side, the RPCOLEMESSAGE structure argument to GetBuffer() has been allocated and initialized by the

caller (or by some other party on the callerôs behalf). Interface proxies are to initialize the members of this structure

as follows.

Member Name Value to initalize to

reserved members as always, reserved values must be initialized to zero / NULL.

pvBuffer must be NULL.

cbBuffer the size in bytes that the channel should allocate for the buffer; that is, the

maximum size in bytes needed to marshal the arguments. The interface proxy

will have determined this information by considering the function signature and

the particular argument values passed in.

It is explicitly legal to have this value be zero, indicating that that the caller does

not himself require a memory buffer.

iMethod the zero-based method number in the interface iid which is being invoked

dataRepresentation if NDR transfer syntax is being used, then this indicates the byte order, etc., by

which the caller will marshal data into the returned buffer.

rpcFlags § Exact values to be listed here.

If the GetBuffer() function is successful, then upon function exit pvBuffer will have been changed by the channel to

point to a memory buffer of (at least) cbBuffer bytes in size into which the method arguments can now be marshaled

(if cbBuffer was zero, pvBuffer may or may not be NULL). The reserved fields in the RPCOLEMESSAGE structure may or

may not have been changed by the channel. However, neither the cbBuffer nor iMethod fields of RPCOLEMESSAGE will

have been changed; the channel treats these as read-only.70 Furthermore, until such time as the now-allocated

memory buffer is subsequently freed (see SendReceive() and FreeBuffer()), no party other than the channel may modify

69 This permits the channel to behind-the-scenes add additional space into the buffer. Such a capability is needed, for example, in order to support

remote debugging.
70 The fact that cbBuffer is unchanged can be of particular use to interface stubs. See IRpcStubBuffer::Invoke().

Field Name Meaning of Field Value in field Interpretation

uCharacterRep determines interpretation of sin-

gle-byte-character valued and sin-

gle-byte-string valued entities

0

1

ASCII

EBCDIC

uByteOrder integer and floating point byte order 0

1

Big-endian (Motorola)

Little-endian (Intel)

uFloatRep representation of floating point numbers 0

1

2

3

IEEE

VAX

Cray

IBM

Table 1. Interpretation of dataPresentation

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 128 DRAFT: October 24, 1995

 All Rights Reserved

any of the data accessible from pMessage with the lone exceptions of the data pointed to by pvBuffer and the member

cbBuffer, which may be modified only in limited ways; see below.

The arguments to GetBuffer() are as follows:

Argument Type Description

pMessage RPCOLEMESSAGE * a message structure initialized as discussed above.

iid REFIID the interface identifier of the interface being invoked.

return value HRESULT S_OK, E_OUTOFMEMORY, E_UNEXPECTED

.3 IRpcChannelBuffer::SendReceive

HRESULT IRpcChannelBuffer::SendReceive(pMessage, pStatus)

Cause an invocation to be sent across to the server process. The caller will have first obtained access to a transmis-

sion packet in which to marshal the arguments by calling IRpcChannelBuffer::GetBuffer(). The same pMessage structure

passed as an argument into that function is passed here to the channel a second time.

In the intervening time period, the method arguments will have been marshaled into the buffer pointed to by pMes-

sage->pvBuffer. However, the pvBuffer pointer parameter must on entry to SendReceive() be exactly as it was when re-

turned from GetBuffer(). That is, it must point to the start of the memory buffer. The caller should in addition set

pMessage->cbBuffer to the number of bytes actually written into the buffer (zero is explicitly a legal value). No other

values accessible from pMessage may be different than they were on exit from GetBuffer().

Upon successful exit from SendReceive(), the incoming buffer pointed to by pvBuffer will have been freed by the

channel. In its place will be found a buffer containing the marshaled return values / out parameters from the interface

stub: pMessage->pvBuffer points to the new buffer, and pMessage->cbBuffer indicates the size thereof. If there are no

such return values, then pMessage->cbBuffer is set to zero, while pMessage->pvBuffer may or may not be NULL.

On error exit from SendReceive(),71 the incoming buffer pointed to by pvBuffer may or may not have been freed. If it

has been freed, then on error exit pMessage->pvBuffer is set to NULL and pMessage->cbBuffer is set to zero. If in contrast,

pMessage->pvBuffer is on error exit not NULL, then that pointer, the data to which it points, and the value pMes-

sage->cbBuffer will contain exactly as they did on entry; that is, the marshaled arguments will not have been touched.

Thus, on error exit from SendReceive(), in no case are any marshaled return values passed back; if a marshaling buffer

is in fact returned, then it contains the marshaled arguments as they were on entry.

The exact cases on error exit when the incoming buffer has or has not been freed needs careful attention. There are

three cases:

1) The channel implementation knows with certainty either that all of the incoming data was successfully

unmarshaled or that if any errors occurred during unmarshaling that the interface stub correctly cleaned

up. In practical terms, this condition is equivalent to the stub manager having actually called IRpcStub-

Buffer::Invoke() on the appropriate interface stub.

 In this case, on exit from SendReceive() the incoming arguments will always have been freed.

2) The channel implementation knows with certainty the situation in case 1) has not occurred.

 In this case, on exit from SendReceive(), the incoming arguments will never have been freed.

3) The channel implementation does not know with certainty that either of the above two cases has oc-

curred.

 In this case, on exit from SendReceive(), the incoming arguments will always have been freed. This is a

possible resource leakage (due to, for example, CoReleaseMarshalData() calls that never get made), but it

safely avoids freeing resources that should not be freed.

If pMessage->pvBuffer is returned as non-NULL, then the caller is responsible for subsequently freeing it; see FreeBuff-

er(). A returned non-NULL pMessage->pvBuffer may in general legally be (and will commonly be, the success case)

different than the (non-NULL) value on entry; i.e.: the buffer may be legally be reallocated. Further, between the re-

turn from SendReceive() and the subsequent freeing call no data accessible from pMessage may be modified, with the

possible exception of the data actually in the memory buffer.

Upon successful exit from SendReceive(), the pMessage->dataRepresentation field will have been modified to contain

whatever was returned by the interface stub in field of the same name value on exit to IRpcStubBuffer::Invoke(). This is

71 That is, if SendReceive() returns an error. Note that this does NOT indicate an error returned from the function invocation on the server object, for

in that case SendReceive() returns success; rather, it indicates an error that occurred somewhere in the RPC transmission.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 129 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

particularly important when NDR transfer syntax is used, as dataRepresentation indicates critical things (such as byte

order) which apply to the marshaled return / out values. Upon error exit from SendReceive(), pMess-

age->dataRepresentation is undefined.

Argument Type Description

pMessage RPCOLEMESSAGE * message structure containing info to transmit to server.

pStatus ULONG * may legally be NULL. If non-NULL, then if either 1) an RPC-infrastruc-

ture-detected server-object fault (e.g.: a server object bug caused an ex-

ception which was caught by the RPC infrastructure) or 2) an RPC

communications failure occurs, then at this location a status code is

written which describes what happened. In the two error cases, the er-

rors E_RPCFAULT and E_RPCSTATUS are (respectively) returned (and

are always returned when these errors occur, irrespective of the

NULL-ness of pStatus).

return value HRESULT S_OK, E_RPCFAULT, E_RPCSTATUS

.4 IRpcChannelBuffer::FreeBuffer

HRESULT IRpcChannelBuffer::FreeBuffer(pMessage)

Free a memory buffer in pMessage->pvBuffer that was previously allocated by the channel.

At various times the RPC channel allocates a memory buffer and returns control of same to a calling client. Both

GetBuffer() and SendReceive() do so, for example. FreeBuffer() is the means by which said calling client informs the

channel that it is done with the buffer.

On function entry, the buffer which is to be freed is pMessage->pvBuffer, which explicitly may or may not be NULL. If

pMessage->pvBuffer is non-NULL, then FreeBuffer() frees the buffer, NULLs the pointer, and returns NOERROR; if pMes-

sage->pvBuffer is NULL, then FreeBuffer() simply returns NOERROR (i.e.: passing NULL is not an error). Thus, on func-

tion exit, pMessage->pvBuffer is always NULL. Notice that pMessage->cbBuffer is never looked at or changed.

There are strict rules as to what data accessible from pMessage may have been modified in the intervening time be-

tween the time the buffer was allocated and the call to FreeBuffer(). In short, very little modification is permitted; see

above and below for precise details.

Argument Type Description

pMessage RPCOLEMESSAGE * pointer to structure containing pointer to buffer to free.

return value HRESULT S_OK, E_UNEXPECTED

.5 IRpcChannelBuffer::GetDestCtx

HRESULT IRpcChannelBuffer::GetDestCtx(pdwDestCtx, ppvDestCtx)

Return the destination context for this RPC channel. The destination context here is as specified in the description of

the IMarshal interface.

The Component Object Model Specification The Component Object Model

Copyright © 1992-95 Microsoft Corporation Page: 130 DRAFT: October 24, 1995

 All Rights Reserved

Argument Type Description

pdwDestCtx DWORD * the place at which the destination context is to be returned.

ppvDestCtx void ** May be NULL. If non-NULL, then this is the place at which auxiliary information

associated with certain destination contexts will be returned. Interface proxies

may not hold on to this returned pointer in their internal state; rather, they must

assume that a subsequent call to IRpcChannel::Call() may in fact invalidate a pre-

viously returned destination context.72

return value HRESULT S_OK, E_OUTOFMEMORY, E_UNEXPECTED, but no others.

.6 IRpcChannelBuffer::IsConnected

HRESULT IRpcChannelBuffer::IsConnected()

Answers as to whether the RPC channel is still connected to the other side. A negative reply is definitive: the con-

nection to server end has definitely been terminated. A positive reply is tentative: the server end may or may not be

still up. Interface proxies can if they wish use this method as an optimization by which they can quickly return an

error condition.

Argument Type Description

return value HRESULT S_OK, S_FALSE. No error values may be returned.

.3 IRpcProxyBuffer Interface

IRpcProxyBuffer interface is the interface by which the client-side infrastructure (i.e. the proxy manager) talks to the

interface proxy instances that it manages. When created, proxies are aggregated into some larger object as per the

normal creation process (where pUnkOuter in IPSFactoryBuffer::CreateProxy() is non-NULL). The controlling unknown

will then QueryInterface() to the interface that it wishes to expose from the interface proxy.

interface IRpcProxyBuffer : IUnknown {

 virtual HRESULT Connect(pRpcChannelBuffer) = 0;

 virtual void Disconnect() = 0;

 };

.1 IRpcProxyBuffer::Connect

HRESULT IRpcProxyBuffer::Connect(pRpcChannelBuffer)

Connect the interface proxy to the indicated RPC channel. The proxy should hold on to the channel, AddRef()ing it as

per the usual rules. If the proxy is currently connected, then this call fails (with E_UNEXPECTED); call Disconnect()

first if in doubt.

Argument Type Description

pRpcChannelBuffer IRpcChannelBuffer* the RPC channel that the interface proxy is to use to effect invocations

to the server object. May not be NULL.

return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED

.2 IRpcProxyBuffer::Disconnect

void IRpcProxyBuffer::Disconnect()

Informs the proxy that it should disconnect itself from any RPC channel that it may currently be holding on to. This

will involve Release()ing the IRpcChannel pointer to counteract the AddRef() done in IRpcProxy::Connect().

Notice that this function does not return a value.

.4 IRpcStubBuffer interface

IRpcStubBuffer is the interface used on the server side by the RPC runtime infrastructure (herein referred to loosely as

the ñchannelò) to communicate with interface stubs that it dynamically loads into a server process.

72 It is possible that in the future a less restrictive rule as to the duration in which the interface proxy may hold on to ppvDestCtxt may be estab-

lished, such as (perhaps) guaranteeing that the pointer is valid for the lifetime of the interface proxy itself. However, as it stands today, the rule,
as stated here, is in fact the law.

The Component Object Model The Component Object Model Specification

DRAFT: October 24, 1995 Page: 131 Copyright © 1992-95 Microsoft Corporation

 All Rights Reserved

interface IRpcStubBuffer : IUnknown {

 virtual HRESULT Connect(pUnkServer) = 0;

 virtual void Disconnect() = 0;

 virtual HRESULT Invoke(pMessage, pChannel) = 0;

 virtual IRpcStubBuffer* IsIIDSupported(iid) = 0;

 virtual ULONG CountRefs() = 0;

 virtual HRESULT DebugServerQueryInterface(ppv) = 0;

 virtual void DebugServerRelease(pv) = 0;

 };

.1 IR pcStubBuffer::Connect

HRESULT IRpcStubBuffer::Connect(pUnkServer)

Informs the interface stub of server object to which it is now to be connected, and to which it should forward all

subsequent Invoke() operations. The stub will have to QueryInterface() on pUnkServer to obtain access to appropriate

interfaces. The stub will of course follow the normal AddRef() rules when it stores pointers to the server object in its

internal state.

If the stub is currently connected, then this call fails with E_UNEXPECTED.

Argument Type Description

pUnkServer IUnknown * the new server object to which this stub is now to be connected.

return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED

.2 IRpcStubBuffer::Disconnect

void IRpcStubBuffer::Disconnect()

Informs the stub that it should disconnect itself from any server object that it may currently be holding on to. Notice

that this function does not return a value.

.3 IRpcStubBuffer::Invoke

HRESULT IRpcStubBuffer::Invoke(pMessage, pChannel)

Invoke the pMessage->iMethodôth method in the server object interface instance to which this interface stub is currently

connected. The RPC runtime infrastructure (the ñchannelò) calls this method on the appropriate interface stub upon

receipt of an incoming request from some remote client. See the discussion on page 123 regarding how interface

stubs implicitly know the IID which they are servicing.

On entry, the members of pMessage are set as follows:

Member Name Value on entry to Invoke()

reserved members indeterminate. These members are neither to be read nor to be changed by the

stub.

pvBuffer points to a buffer which contains the marshaled incoming arguments. In the case

that there are no such arguments (i.e.: cbBuffer == 0), pvBuffer may be NULL, but

will not necessarily be so.

cbBuffer the size in bytes of the memory buffer to which pvBuffer points. If pvBuffer is

NULL, then cbBuffer will be zero (but the converse is not necessarily true, as was

mentioned in pvBuffer).

iMethod the zero-based method number in the interface which is being invoked

dataRepresentation if NDR transfer syntax is being used, then this indicates the byte order, etc.,

according to which the data in pvBuffer has been marshaled.

rpcFlags indeterminate. Neither to be read nor to be changed by the stub.

The stub is to do the following:

¶ unmarshal the incoming arguments,

¶ invoke the designated operation in the server object,

¶ ask the channel to allocate a new buffer for the return values and out values,

¶ marshal the return values and out values into the buffer, then

